

LHCb Upgrade Architecture Review Back End

J.P. Cachemiche, P.Y. Duval, F. Hachon R. Le Gac, F. Réthoré Centre de Physique des Particules de Marseille

LHCb Upgrade Architecture Review : Back-End

CPPM

Outline

- Aim(s) of the board
- Board architecture
- Data paths: Acquisition, TFC, ECS, IPMI, ...
- Crate
- Feasibility
- Firmware development

Aims(s) of the board

A single board to address 4 functions :

A board instanciates a specific function by programming specifically its FPGAs and reorganizing its data paths.

Board architecture

ATCA standard

The LHCb collaboration decided to implement the readout on ATCA

Many advantages:

- Robust and well defined mechanics
- Adapted to recent components
 - Form factor lets more room for heatsinks
 - Power supply dimensionned for high speed components
 - Powerfull cooling
- Standard backplane
 - Topology based on serial links
- Standard mezzanines
- Costs comparable to VME
- Elaborate health monitoring system (IPMI)

Difficulties :

- IPMI implementation quite complicate

\rightarrow Review of feasibility at the end of full scale prototype

ATCA objects

ATCA topologies

Off the shelf backplanes

- Exist in several topologies
 - Dual star
 - Full mesh

Generic optical mezzanine: AMC40

36 bidirectional optical links at up to 10 Gbits/s 622 kLE FPGA Stratix V GX: 5SGXEA7N2F45C3N

AMC40 first prototype

Generic readout board : ATCA40

Only firmware and **datapath programming** change to implement readout, time distribution, slow control or trigger interface

ATCA40 First prototype

1000

18 layers PCB 4 AMC boards One 72 x 72 crossbar 144 optical inputs and 144 optical outputs at up to 10 Gbits/s Slow control through GbE Estimated power consumtion : 250 W

Data paths

External Data paths

Internal Data paths

Crossbar switch for high speed serial links

- 72 x 72 CML interface
- Up to 6.5 Gbits/s
- 3 bidir links with each AMC
- 3 bidir links with each of 13 backplane channel

FPGA switch for clocks and throttles

- LVDS interface
- Up to 800 Mbits/s
- 1 bidir clock with each AMC
- 1 bidir throttle with each AMC
- 1 bidir link with each of 13 backplane channel

ECS

From control PC to FPGAs embedded in AMCs

- 1 Gbit Ethernet to COM Express module
- 4 PCIe Gen1 links to FPGAs

Acquisition

From Front Ends to Farms

- Output dataflow = Input dataflow
- Direct connection to/from front plate

Timing and Fast Control

From S-ODIN to FE and TELL40s

Example of configuration: many other ones possible ...

- Clocks and triggers broadcast over 2.4 Gbits/s serial lines
- Relies on flexibility of Crossbar switch

Throttles

From TELL40s to S-ODIN

Example of configuration: many other ones possible ...

- Throttles transfered over 800 Mbits/s LVDS links Information includes
 - B-Id : 12 bits
 - Throttles : 4 bits
 - Encoding 8B10B
- Combination and routing made by Cyclone IV FPGAs Information includes
 - B-Id : 12 bits
 - Throttles : 52 bits
- Result transfered to AMC1 over two 2.4 Gbits/s GBT links
- Final result sent to S-ODIN over one 4.8 Gbits/s GBT link

LHCb Upgrad

Interface to ODIN

S-ODIN to ODIN:

- Orbit, Clocks, Bid reset ... transmitted over LVDS links
- Conversion on S-ODIN RTM board in ECL signals

IPMI data path

From control PC to MMCs

- 1 Gbit Ethernet to Shelf Manager
- Redundant IPMB A/B to CIPMC
- IPMB_L to MMCs

Functions limited to:

- Hard resets
- Temperature, voltage monitoring
- Switching on and off the board

20

Network

Backplane

Crate, power consumption, shelf manager ...

Use of a 14 slots Schoff crate

- Lab test purpose for the time being
- Mechanical adaptation needed to reuse vertical heat exchangers
- Full-Mesh topology

Power consumtion

- Estimated power consumption per board : $\sim 250 \text{ W} \rightarrow \text{to } 3.5 \text{ kW}$ /crate
- Crate cooling capacity: 4.2 kW

Shelf manager

- Pigeon Point ShMM-ACB-V
- Chosen for compatibility reasons with LAPP IPMI board

Schroff 14 slots crate (ref 11596-30x)

Feasibility

Clock phase over serial links (1)

Can we keep a fix clock phase over chained serial links when powering on and off the system ?

 Recovered clock phase is not constant in a FPGA deserializer

Succesfully tested on Stratix IV GX

- Use of a deterministic latency mode
- Phase variation on second serial stream :
 - ~ ± 50 ps RMS

Clock phase over serial links (2)

Preliminary results : need more statistics

- Next steps
 - Port this design on Stratix V GX
 - Measurements from chip to chip through backplane with several hops
 - Implement equivalent mechanism on GBT protocol
 - Experimental on-going work by Federico Alessio and Richard Jacobsson Use of a not interleaved GBT protocol at 2.4 Gbits/s

Optical links

BER < 10⁻¹⁶ at 4.8 Gbits/s and 10.3125 Gbits/s over 10 meters OM3 optical fiber

Measurements at 4,8 Gbit/s :Total Jitter \approx 56 pSRandom Jitter \approx 2,4 pSDeterministic Jitter \approx 24 pSaperture : 0,65 UI@10¹⁶

Measurements at 10.3125 Gbit/s :Total Jitter $\approx 55 \text{ pS}$ Random Jitter $\approx 0.93 \text{ pS}$ Deterministic Jitter $\approx 42 \text{ pS}$ aperture : 0,42 UI@10¹⁶

Further qualification required:

- exhaustive test of all links of the board,
- crosstalk,
- 100, 300, 400 meters fibers

IPMI risk mitigation

Use of an open source and already tested chain

- Shelf manager Pigeon Point

Tested

CIPMC developped by Annecy
Based on open source CoreIPM

Under development

MMC developped by DESY/CPPM/CERN
Basé sur open source DESY

Common solution with ATLAS

CIPMC

Mezzanine MMC

Firmware development

Motivations for a Low Level Interface

Many firmwares but common data flows and requirements

- Same data path for control
- Same input and output data path for processing
- Need for embedded stand-alone simulators (FE, TFC, LLT, Farm, ...)
- Monitoring buffers

Need for a flexible low level interface in which user code can be "plugged"

- Hide the underlying complexity (GX buffers, GBT, PCIe, 10 GbE, ...)

Marseille proposal : QSYS

Powerful system integration tool

- High level of abstraction for design capture
- Facilitates design reuse

Save time by avoiding writing HDL code for interconnection

- Automatically creates high-performance interconnect logic

Easy way to normalize interfaces in the system

- Standard interfaces
- Documentation maintained by Altera and already available

Automatic test bench generation

Low level Interface

_

Conclusion

Flexible architecture

- Single hardware, easy to maintain
- Modular and reconfigurable
- Can take into account future needs

Early measurements make us confident on feasibility

- Clock phase stability over serial link: ~ ± 50 ps RMS
- High speed BER < 10^{-16} at 10.3125 Gbits/s

Distributed development with common LLI

Ongoing validation of a full scale prototype

Backup slides

S-ODIN RTM

FPGA choice

Package	Stratix V GX							Stratix V GT		Stratix V GS					Stratix V E		
	A3	A4	A5	A7	A9	AB	B 5	B 6	C5	C7	D3	D4	D5	D6	D8	E9	EB
EH29-H780	~										~	~					
HF35-F1152 (2)	~	~	~	~							~	~	~				
KF35-F1152	~	~	~	~	-			1	2		2						
KF40-F1517 / KH40-H1517	~	~	~	~	~	~						~	~	~	~		
NF40 / KF40-F1517 (3)			~	~					~	~							
RF40-F1517							~	~									
H40-H1517																~	~
RF43-F1760							~	~									-
NF45-F1932			~	~	~	~	-	2	8		e.	· · ·		~	~		-
F45-F1932		2						2.	2/ I			2)			2)	~	~

Notes to Table 1-5:

(1) All devices in a given row allow migration.

(2) All devices in this row are in the HF35 package and have twenty-four 14.1-Gbps transceivers.

(3) The 5SGTC5/7 devices in the KF40 package have four 28.05-Gbps transceivers and thirty-two 12.5-Gbps transceivers. Other devices in this row are in the NF40 package and have forty-eight 14.1-Gbps transceivers.

Links repartition on an AMC board

	TFC+ECS	TELL40 GBT Frame Format	TELL40 GBT Wide bus mode
Input protocol	GBT	GBT	GBT
Output protocol	GBT	10 GbE	10 GbE
Input links	up to 36	24	24
Output links	up to 36	8 (up to 12)	12

Links organization

Links organization

Data paths : Acquisition Timing and Fast Trigger

Clock phase over serial links

Can we keep a fix clock phase over chained serial links when powering on and off the system ?

Recovered clock phase is not constant _ in a FPGA deserializer

Methodology

Special mechanisms present in Stratix IV GX and V GX can be used

- Early tests made last year with Stratix IV GX
- Use of 8B10B code rather than GBT protocol to be able to detect the phase over a serial link
- Serial link speed : 2.4 Gbits/s
- Whole path emulated in a single FPGA

Test setup

Measurements : Set UP

Results

Phase of serial stream vs Tx_Clock

- Deterministic delay between clock and serial stream when powering on and off
- Phase variation: ± 50 ps

Phase of recovered clock vs Tx_Clock

 Delay = deterministic function of Bit slip out information from receiving GX + Control flags

Locking the phase of two serial steams

Phase of serial stream vs bit_slip_in

- Deterministic relationship

Phase of serial stream 2 vs serial stream 1

- With these two mechanisms, possibility to compensate before resending data

 Phase variation on second serial stream after compensation :

Hardware resets

