Interference effects from SM processes (WW/ZZ)to Higgs production/decay

Nikolas Kauer Royal Holloway, University of London

in part in collaboration with Giampiero Passarino

ATLAS/CMS/LPCC Workshop: Monte Carlo Generators and Tools CERN

November 21, 2012

Outline

- Introduction
- Light Higgs
- Heavy Higgs
- Outlook
- Summary

Gluon-fusion Higgs production

Leading order (LO), loop-induced Georgi, Glashow, Machacek, Nanopoulos (1978)

Next-to-leading order (NLO), $m_t \rightarrow \infty$ approx. (few percent accuracy) Djouadi, Spira, Zerwas (1991); Dawson (1991)

NLO, full mt, mb dependence, LHC: K - 1 ~ 80-100% Graudenz, Spira, Zerwas (1993); Spira, Djouadi, Graudenz, Zerwas (1995)

Next-to-leading order (NNLO), m_t → ∞ approx., NNLO/NLO – 1 ~ 25% Harlander (2000); Catani, de Florian, Grazzini (2001); Harlander, Kilgore (2001, 2002); Anastasiou, Melnikov (2002); Ravindran, Smith, van Neerven (2003); Blümlein, Ravindran (2005); Catani, Grazzini (2007)

soft-gluon resummation,

leading soft contributions @ NNNLO Moch, Vogt (2005); Laenen, Magnea (2006); Idilbi, Ji, Ma, Yuan (2006); Ravindran (2006)

accuracy of $m_t \rightarrow \infty$ approx. @ NNLO (<1% if $M_H \lesssim 300$ GeV) Marzani, Ball, Del Duca, Forte, Vicini (2008); Harlander, Ozeren (2009); Harlander, Mantler, Marzani, Ozeren (2010); Pak, Rogal, Steinhauser (2009, 2010); Anastasiou, Boughezal, Petriello (2009)

Electroweak corrections: +5% (M_H = 120 GeV) to -2% (M_H = 300 GeV) Diouadi, Gambino (1994); Aglietti, Bonciani, Degrassi, Vicini (2004); Degrassi, Maltoni (2004); Actis, Passarino, Sturm, Uccirati (2009); Actis, Passarino, Sturm, Uccirati (2008); Anastasiou, Boughezal, Petriello (2008); Keung, Petriello (2009); Brein (2010)

Recent updates de Florian, Grazzini (2009); Baglio, Djouadi (2010, 2011); Baglio, Djouadi, Ferrag, Godbole (2011); Catani, Grazzini (2011); Spira (HIGLU update); de Florian, Ferrera, Grazzini, Tommasini (2011, 2012) (HRes); LHCHXS2 (2012); Anastasiou, Buehler, Herzog, Lazopoulos (2012) (Ihixs); de Florian, Grazzini (2012)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gluon-fusion Higgs $\rightarrow VV$ and continuum VV production

 $gg \rightarrow H \rightarrow VV$ searches Dittmar, Dreiner (1996); Davatz, Giolo-Nicollerat, Zanetti (2006); Mellado, Quayle, Sau Lan Wu (2007); Davatz, Dittmar, Giolo-Nicollerat (2007); Davatz (2007); Quayle (2008); Mellado, Ruan, Zhang (2011)

QCD corrections/shower MCs for $gg \rightarrow H \rightarrow VV$ searches Cranmer, Mellado, Quayle, Sau Lan Wu (2003); Davatz, Dissertori, Dittmar, Grazzini, Pauss (2004); Davatz, Stöckli, Anastasiou, Dissertori, Dittmar, Melnikov, Petriello (2006); Davatz, Dittmar, Pauss (2006); Grazzini (2006, 2008); Anastasiou, Dissertori, Stöckli (2007); Anastasiou, Dissertori, Stöckli, Webber (2008); Frederix, Grazzini (2008); Anastasiou, Dissertori, Grazzini, Grazzini, Stöckli, Webber (2009)

 $q\bar{q} \rightarrow VV$ (LO, NLO, decays) Brown, Mikaelian (1979); Stirling, Kleiss, Ellis (1985); Gunion, Kunszt (1986); Muta, Najima, Wakaizumi (1986); Berends, Kleiss, Pittau (1994); Ohnemus (1991); Mele, Nason, Ridolfi (1991); Ohnemus, Owens (1991); Frixione (1993); Ohnemus (1994); Dixon, Kunszt, Signer (1998, 1999); Campbell, Ellis (1999) (MCFM); Campbell, Ellis, Williams (2011) (MCFM); Melia, Nason, Röntsch, Zanderighi (2011) (POWHEG BOX)

 $gg \rightarrow VV$ and $gg \rightarrow VVg$ [loop induced] (LO, decays) Dicus, Kao, Repko (1987); Glover, van der Bij (1989); Kao, Dicus (1991); Matsuura, v.d. Bij (1991); Zecher, Matsuura, v.d. Bij (1994); Dührssen, Jakobs, v.d. Bij, Marquard (2005); Binoth, Ciccolini, NK, Krämer (2005, 2006) (gg2WW); Binoth, NK, Mertsch (2008) (gg2ZZ); Campbell, Ellis, Williams (2011) (MCFM); Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli (2011) (aMC@NLO); Melia, Melnikov, Rontsch, Schulze, Zanderighi (2012) (MCFM); NK (2012) (gg2VV); Agrawal, Shivaji (2012); VBFNLO-2.6

Higgs-continuum VV interference Glover, van der Bij (1989); Binoth, Ciccolini, NK, Krämer (2006) (gg2WW); Campbell, Ellis, Williams (2011) (MCFM); NK (2012) (gg2VV); Passarino (2012); NK, Passarino (2012); VBFNLO-2.6; $\gamma\gamma$: Dixon, Siu (2003); Martin (2012)

Calculate $gg \rightarrow H \rightarrow VV \rightarrow$ leptons (V = W, Z) off-shell (and H in ZWA) LO cross sections and distributions including interference with continuum VV production (γ^* contributions included, important for $M_H < 2M_Z$) with realistic experimental selection cuts using gg2VV

- pp collisions at $\sqrt{s} = 8 \text{ TeV}$
- all results for single lepton flavour combination (ℓ^{\pm} and ν)
- input parameters: LHC Higgs Cross Section WG, arXiv:1101.0593 [hep-ph], App. A (with NLO Γ_V and G_μ scheme)
- MSTW2008NNLO PDF
- · finite top and bottom quark mass effects included
- $M_H = 125 \,\mathrm{GeV}$ with $\Gamma_H = 0.004434 \,\mathrm{GeV}$
- $\mu_R = \mu_F = M_H/2$
- $V_{\text{CKM}} = 1$: negligible error (< 10^{-5})

For on/off-shell comparison, define the ZWA M_{VV} distribution as:

$$\left(\frac{d\sigma}{dM_{VV}}\right)_{\rm ZWA} = \sigma_{H,\rm ZWA} \; \frac{M_H \Gamma_H}{\pi} \; \frac{2M_{VV}}{\left(M_{VV}^2 - M_H^2\right)^2 + (M_H \Gamma_H)^2}$$

▲□▶▲□▶▲≡▶▲≡▶ 三 シのの

Relative measures for interference effect

S + B-inspired measure:

$$R_1 := \frac{\sigma(|\mathcal{M}_{\mathsf{H}} + \mathcal{M}_{\mathsf{cont}}|^2)}{\sigma(|\mathcal{M}_{\mathsf{H}}|^2) + \sigma(|\mathcal{M}_{\mathsf{cont}}|^2)}$$

 S/\sqrt{B} -inspired measure:

$$R_2 := \frac{\sigma(|\mathcal{M}_{\mathsf{H}}|^2 + 2\operatorname{\mathsf{Re}}(\mathcal{M}_{\mathsf{H}}\mathcal{M}^*_{\operatorname{cont}}))}{\sigma(|\mathcal{M}_{\mathsf{H}}|^2)}$$

Relative measure for off-shell effect (accuracy of ZWA)

$$R_0 := rac{\sigma_{H,\mathsf{ZWA}}}{\sigma_{H,\mathsf{offshell}}}$$

N. Kauer Interference effects from SM processes (WW/ZZ) to Higgs production/decay CERN November 21, 2012 6 / 24

 $gg \to H \to ZZ \to \ell \bar{\ell} \ell \bar{\ell}$ and $\ell \bar{\ell} \ell' \bar{\ell}'$ at $M_H = 125 \,\text{GeV}$

Same- and different-flavour 4-charged-lepton channels

In these search channels, the invariant mass of the intermediate Higgs $(M_{H^*} \equiv M_{ZZ})$ can be reconstructed. The M_{ZZ} spectrum is hence used as the discriminant variable in the final stage of the analysis, and the test statistic is evaluated with a binned maximum-likelihood fit of signal and background models to the observed M_{ZZ} distribution. For light Higgs masses, the observed M_{ZZ} distribution is dominated by experimental resolution effects and for example fitted as Gaussian with a standard deviation of 2-2.5 GeV (or similar bin sizes are used). The constraints on M_{ZZ} (binning) introduce an error of order 0.1%. Invariant masses above $2M_Z$, where large deviations from the Breit-Wigner shape occur, are excluded by the experimental procedure. Higgs-continuum interference effects are negligible.

周 ト イ ヨ ト イ ヨ ト

 $gg \to H \to ZZ \to \ell \bar{\ell} \ell \bar{\ell}$ and $\ell \bar{\ell} \ell' \bar{\ell}'$ at $M_H = 125 \,\text{GeV}$

	g_{i}						
	σ [fl	ZWA	interfe	erence			
mode	$H_{\sf ZWA}$	H_{offshell}	cont	$ H_{\rm ofs}$ +cont $ ^2$	R_0	R_1	R_2
$\ell \bar{\ell} \ell \bar{\ell}$	0.0748(2)	0.0747(2)	0.000437(3)	0.0747(6)	1.002(3)	0.994(8)	0.994(8)
$\ell \bar{\ell} \ell' \bar{\ell}'$	0.1395(2)	0.1393(2)	0.000583(2)	0.1400(3)	1.002(2)	1.001(2)	1.001(2)

Cross sections for $qq (\to H) \to ZZ \to \ell \bar{\ell} \ell \bar{\ell}$ and $\ell \bar{\ell} \ell' \bar{\ell'}$ in pp collisions at $\sqrt{s} = 8 \text{ TeV}$ for $M_H = 125 \,\text{GeV}$ and $\Gamma_H = 0.004434 \,\text{GeV}$ calculated at LO with gg2VV. The zerowidth approximation (ZWA) and off-shell Higgs cross sections, the continuum cross section and the sum of off-shell Higgs and continuum cross sections including interference are given. The accuracy of the ZWA and the impact of off-shell effects are assessed with
$$\begin{split} R_0 &= \sigma_{H,\text{ZWA}}/\sigma_{H,\text{offshell}}. \text{ Interference effects are illustrated through } R_1 = \sigma(|\mathcal{M}_H + \mathcal{M}_{\text{cont}}|^2)/\sigma(|\mathcal{M}_H|^2 + |\mathcal{M}_{\text{cont}}|^2) \text{ and } R_2 = \sigma(|\mathcal{M}_H|^2 + 2\operatorname{Re}(\mathcal{M}_H\mathcal{M}^*_{\text{cont}}))/\sigma(|\mathcal{M}_H|^2). \end{split}$$
 γ^* contributions are included in \mathcal{M}_{cont} . Applied cuts: $|M_{ZZ} - M_H| < 1 \text{ GeV}|, p_{T\ell} > 1$ $5 \text{GeV}, |\eta_\ell| < 2.5, \Delta R_{\ell\ell} > 0.1$, 76 GeV $< M_{\ell\bar{\ell},12} < 106$ GeV and $15 \text{GeV} < M_{\ell\bar{\ell},34} < 115$ GeV, $M_{\ell\bar{\ell}} > 4$ GeV. The invariant mass of the same-flavour, opposite-sign lepton pair closest to M_Z is denoted by $M_{\ell\bar{\ell},12}$. $M_{\ell\bar{\ell},34}$ denotes the invariant mass of the remaining lepton pair. Cross sections are given for a single lepton flavour combination. No flavour summation is carried out for charged leptons or neutrinos. The integration error is given in brackets.

(4) E (4) (4) E (4)

Higgs invariant mass peak shift due to interference $gg \rightarrow H \rightarrow \gamma\gamma$ at $M_H = 125 \,\text{GeV}$ (S.P. Martin, arXiv:1208.1533)

 $M_{\gamma\gamma}$ resolution: Gaussian ($\sigma_M = 1.7 \text{ GeV}$), $H \rightarrow \gamma\gamma$ peak shift: $\mathcal{O}(-150 \text{ MeV})$

 $gg \to H \to ZZ \to \ell \bar{\ell} \ell' \bar{\ell}'$ at $M_H = 125 \,\text{GeV}$

 \rightarrow H \rightarrow ZZ^{*} peak shift is tiny (compared to bin width of 167 MeV)

$gg \to H \to W^-W^+ \to \ell \bar{\nu}_\ell \bar{\ell}' \nu_{\ell'}$ at $M_H = 125 \,\text{GeV}$

	<i>gg</i> ($\rightarrow H) \rightarrow V$	$V^-W^+ \rightarrow V^-$				
	σ [fb]	, pp , $\sqrt{s} = 1$	$8 \text{ TeV}, M_H =$	ZWA	interfe	rence	
selection cuts	H _{ZWA}	H_{offshell}	cont	$ H_{ofs}+cont ^2$	R_0	R_1	R_2
standard cuts	2.707(3)	3.225(3)	10.493(5)	12.241(8)	0.839(2)	0.8923(7)	0.542(3)
Higgs search cuts	1.950(1)	1.980(1)	2.705(2)	4.497(3)	0.9850(7)	0.9599(7)	0.905(2)
$+(0.75M_H < M_{T1} < M_H)$	1.7726(9)	1.779(1)	0.6443(9)	2.383(2)	0.9966(8)	0.983(1)	0.977(2)
$+(80 \text{ GeV} < M_{T2} < M_H)$	1.7843(9)	1.794(1)	0.955(1)	2.687(3)	0.9944(8)	0.977(1)	0.965(2)

Cross sections for $gg (\rightarrow H) \rightarrow W^- W^+ \rightarrow \ell \bar{\nu}_\ell \bar{\ell}' \nu_{\ell'}$ for $M_H = 125 \,\text{GeV}$ with standard cuts, Higgs search cuts and additional transverse mass cut (either on M_{T1} or M_{T2}). Standard cuts: $p_{T\ell} > 20 \,\text{GeV}$, $|\eta_\ell| < 2.5$, $p_T > 30 \,\text{GeV}$, $M_{\ell\ell} > 12 \,\text{GeV}$. Higgs search cuts: standard cuts and $M_{\ell\ell} < 50 \,\text{GeV}$, $\Delta \phi_{\ell\ell} < 1.8$.

cannot reconstruct M_{H^*} : use transverse mass observable M_T as proxy:

$$\begin{aligned} \text{ATLAS:} \quad M_{T1} &= \sqrt{(M_{T,\ell\ell} + \not\!\!\! p_T)^2 - (\mathbf{p}_{T,\ell\ell} + \not\!\!\! p_T)^2} \quad \text{with} \quad M_{T,\ell\ell} &= \sqrt{p_{T,\ell\ell}^2 + M_{\ell\ell}^2} \\ \text{CMS:} \quad M_{T2} &= \sqrt{2 \, p_{T,\ell\ell} \, \not\!\!\! p_T (1 - \cos \Delta \phi_{\ell\ell,\text{miss}})} \quad \text{with} \quad \Delta \phi_{\ell\ell,\text{miss}} &= \angle (\mathbf{p}_{T,\ell\ell}, \not\!\!\! p_T) \end{aligned}$$

伺 ト イ ヨ ト イ ヨ ト

Standard cuts: $p_{T\ell} > 20 \text{ GeV}, |\eta_\ell| < 2.5, p_T > 30 \text{ GeV}, M_{\ell\ell} > 12 \text{ GeV}$

Higgs search cuts: $p_{T\ell} > 20 \text{ GeV}, |\eta_{\ell}| < 2.5, p_T > 30 \text{ GeV}, 12 \text{ GeV} < M_{\ell\ell} < 50 \text{ GeV}, \Delta \phi_{\ell\ell} < 1.8.$

Standard cuts: $p_{T\ell} > 20 \text{ GeV}, |\eta_\ell| < 2.5, p_T > 30 \text{ GeV}, M_{\ell\ell} > 12 \text{ GeV}$

 $gg \to H \to WW/ZZ \to \ell \bar{\nu}_\ell \bar{\ell} \nu_\ell$ (same flavour) at $M_H = 125 \, {\rm GeV}$

	$gg (\rightarrow$	$H) \rightarrow WW$			
	σ [fb], pp ,	$\sqrt{s}=8{\rm TeV}$	interfe	erence	
selection cuts	$H_{\rm offshell}$	cont	$ H_{\text{ofs}}+\text{cont} ^2$	R_1	R_2
standard cuts	3.225(4)	11.42(5)	12.95(8)	0.884(6)	0.47(3)
Higgs search cuts	1.919(3)	2.711(7)	4.438(8)	0.958(3)	0.900(6)
$+(0.75M_H < M_{T1} < M_H)$	1.736(2)	0.645(2)	2.335(4)	0.981(2)	0.974(3)

(details as on p. 10)

For comparison: different-flavour results (from p. 10):

	$gg (\rightarrow$	$H) \rightarrow WW$			
	σ [fb], pp ,	$\sqrt{s}=8{\rm TeV}$,	interfe	rence	
selection cuts	Hoffshell	cont	$ H_{ofs}+cont ^2$	R_1	R_2
standard cuts	3.225(3)	10.493(5)	12.241(8)	0.8923(7)	0.542(3)
Higgs search cuts	1.980(1)	2.705(2)	4.497(3)	0.9599(7)	0.905(2)
$+(0.75M_H < M_{T1} < M_H)$	1.779(1)	0.6443(9)	2.383(2)	0.983(1)	0.977(2)

Heavy Higgs analysis

 $gg \to H \to ZZ \to \ell \bar{\ell} \ell' \bar{\ell}'$ at $M_H = 400 \,\text{GeV}$

standard cuts: $p_{T\ell} > 20 \text{ GeV}, |\eta_{\ell}| < 2.5, \quad 76 \text{ GeV} < M_{\ell \bar{\ell}}, M_{\ell' \bar{\ell}'} < 106 \text{ GeV}$

Higgs search cuts: standard cuts and $|M_{\ell \bar{\ell} \ell' \bar{\ell'}} - M_H| < \Gamma_H$

Settings: $\mu_R = \mu_F = M_H/2$ GeV, $\Gamma_H = 29.16$ GeV, MSTW2008LO, other: LHC Higgs Cross Section WG, arXiv:1101.0593 [hep-ph], App. A (with NLO Γ_V and G_μ scheme)

		σ [fb], $pp, \sqrt{s} = 7$ TeV, $M_H = 400$ GeV			interference		
process	cuts	$ \mathcal{M}_H ^2$	$ \mathcal{M}_{cont} ^2$	$ \mathcal{M}_H + \mathcal{M}_{cont} ^2$	R_1	R_2	
$gg (\to H) \to ZZ$	stand.	0.3654(4)	0.3450(4)	0.7012(8)	0.987(2)	0.975(3)	
$gg \; (\rightarrow H) \rightarrow ZZ$	Higgs	0.2729(3)	0.01085(2)	0.2867(3)	1.010(2)	1.011(2)	
		σ [fb], $pp, \sqrt{s} = 14$ TeV, $M_H = 400$ GeV			interference		
process	cuts	$ \mathcal{M}_H ^2$	$ \mathcal{M}_{cont} ^2$	$ \mathcal{M}_H + \mathcal{M}_{cont} ^2$	R_1	R_2	
$gg (\to H) \to ZZ$	stand.	1.893(3)	1.417(2)	3.205(5)	0.969(2)	0.945(3)	
$gg \ (\rightarrow H) \rightarrow ZZ$	Higgs	1.377(2)	0.0531(1)	1.445(2)	1.011(2)	1.011(3)	

similar interference effects in $H \to ZZ \to \ell \bar{\ell} \ell \bar{\ell}$ and $\ell \bar{\ell} \nu_{\ell'} \bar{\nu}_{\ell'}$ (and $M_H = 500 \text{ GeV}$ or $\sqrt{s} = 8 \text{ TeV}$)

MCFM team: thorough analysis of $gg \to H \to WW \to \ell \bar{\nu}_{\ell} \bar{\ell'} \nu_{\ell'}$ (diff. flavour), arXiv:1107.5569

Heavy Higgs analysis $gg \to H \to ZZ \to \ell \bar{\ell} \ell' \bar{\ell}' \text{ at } M_H = 400 \,\text{GeV}$

 $M_{l\bar{l}l'\bar{l'}}$ [GeV] (left) and $\Delta \phi_{l\bar{l}}$ [°] (right) distributions [fb/[O]]

LHC, 7 TeV, standard cuts

similar M_{WW} distribution for $H \to WW$

Heavy Higgs analysis $gg\to H\to WW/ZZ\to \ell\bar\nu_\ell\bar\ell\nu_\ell \ {\rm (same flavour)}$

same flavour: all four contributions interfere (different flavour: WW only)

continuum WW/ZZ interference:

Nason and Rocket team studied continuum WW/ZZ interference in quark scattering (LO) \rightarrow negligible (arXiv:1107.5051)

 $gg \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$ with minimal cuts: negative interference of $\sim 6\%$ at 8 TeV

 $\sigma(WW + ZZ + \text{interference})/\sigma(WW + ZZ) = 0.935(5)$

Heavy Higgs analysis

$gg \to H \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell}$: minimal cuts

	$gg (\rightarrow$	$H) \rightarrow WW$			
	σ [fb], pp ,	$\sqrt{s}=8{\rm TeV}$	interfe	rence	
process	H_{offshell}	cont	$ H_{\text{ofs}}$ +cont $ ^2$	R_1	R_2
$gg (\rightarrow H) \rightarrow WW$	1.44(1)	12.29(3)	14.10(5)	1.027(4)	1.26(4)
$gg (\to H) \to ZZ$	0.261(2)	1.590(5)	1.896(6)	1.024(4)	1.17(3)
$gg (\rightarrow H) \rightarrow WW/ZZ$	1.69(2)	12.98(6)	15.00(8)	1.022(7)	1.19(6)

	$gg (\rightarrow H$				
	σ [fb], $pp,$	interfer	ence		
process	Hoffshell	cont	$ H_{\text{ofs}}+\text{cont} ^2$	R_1	R_2
$gg (\rightarrow H) \rightarrow WW$	0.0772(5)	10.50(3)	10.72(3)	1.013(4)	2.8(5)
$gg (\to H) \to ZZ$	0.01426(9)	1.353(4)	1.387(4)	1.015(4)	2.4(4)
$gg (\rightarrow H) \rightarrow WW/ZZ$	0.0914(6)	11.02(6)	11.30(8)	1.017(9)	3(1)

minimal cuts: $M_{\ell\bar{\ell}} > 4 \text{ GeV}, \ p_T(\ell\bar{\nu}_\ell) > 1 \text{ GeV}, \ p_T(\ell\bar{\ell}) > 1 \text{ GeV}, \ parameters as above the second se$

 $\mu_R = \mu_F = M_H/2$, CT10nnlo PDF, $\Gamma_H = 103.933~(416.119)~{\rm GeV}$ for $M_H = 600~(1000)~{\rm GeV}$

- 3

伺 ト イヨ ト イヨト

Heavy Higgs analysis

$gg \to H \to WW/ZZ \to \ell \bar{\nu}_{\ell} \bar{\ell} \nu_{\ell} : H \to ZZ$ search cuts

	$gg (\rightarrow H$	$(I) \rightarrow WW/Z$			
	σ [fb], pp , $$	$\sqrt{s}=8$ TeV, Λ	interfe	erence	
process	H_{offshell}	cont	$ H_{\rm ofs}$ +cont $ ^2$	R_1	R_2
$gg (\rightarrow H) \rightarrow ZZ$	0.2175(8)	0.0834(2)	0.3150(8)	1.047(4)	1.065(6)
$gg (\rightarrow H) \rightarrow WW/ZZ$	0.2220(8)	0.1020(2)	0.3406(8)	1.051(4)	1.075(6)

	$gg (\rightarrow H$				
	σ [fb], pp , $$	interfe	rence		
process	Hoffshell	cont	$ H_{\text{ofs}} + \text{cont} ^2$	R_1	R_2
$gg (\rightarrow H) \rightarrow ZZ$	0.01265(5)	0.0687(2)	0.0927(2)	1.140(3)	1.90(2)
$gg (\rightarrow H) \rightarrow WW/ZZ$	0.01278(5)	0.0846(3)	0.1090(2)	1.119(3)	1.91(3)

伺下 イヨト イヨ

Outlook

Interference effects for semileptonic final states

$$gg \to H \to W^-W^+ \to \ell \bar{\nu}_\ell q \bar{q}'$$
 (and c.c.)
 $gg \to H \to ZZ \to \ell \bar{\ell} q \bar{q}$

qualitative differences to $gg \rightarrow H \rightarrow 4$ leptons interference with lower-order tree-level processes:

Summary

- interference (and off-shell) effects essential to reach 1% precision level
- $\mathcal{O}(5\text{--}10\%)$ corrections to inclusive $gg \to H \to VV$ due to sizeable Higgs signal in region with invariant mass above $2M_V$ even for $M_H = 125 \text{ GeV}$
- + $\mathcal{O}(100\%)$ corrections for very heavy Higgs signal
- experimental selection cuts allow to reduce/eliminate corrections
- $M_H = 125 \text{ GeV}: 4\ell$ is uncritical, WW: apply M_{T1} cut
- heavy Higgs search: 4ℓ is uncritical, $ZZ \rightarrow 2\ell 2\nu$: sizable effects with current selections (they should be improved)
- same-flavour $2\ell 2\nu$: need to take into account WW/ZZ interference negative continuum $gg \rightarrow WW/ZZ$ interference of $\mathcal{O}(5\%)$
- gg2VV simulator available (parton-level integrator and event generator)
- wish list: NLO prediction for Higgs-continuum interference