Atlas/CMS/LPCC MC Workshop

MC issues

Thorsten Kuhl

- Intro
- Few test cases:
 - Ttbar
 - W+jets
 - Heavy flavours
- Comments

Overview

- Now we have a lot of Data → we can constrain various variations
 - Scales are sometimes already constrained by data
 - Need proper heavy flavour treatment
 - We can constrain shower at low (MinBias) and higher scale (di-jet and ttbar gap fraction)
- We have a lot of very fancy Monte Carlo generators
- Producing MC is expensive (CPU time):
 - 500 events per 40 hours Sherpa ttbar+3jets (9 legs) wo phase space integration
 - Alpgen similar but only at ttbar+Np5 (7 legs)
 - Simulation: additional 1-5 Minutes
 - → We have to be sure that we produce good Monte Carlo events
- Point of talk is not to blame someone or show computational issues,
 it is about physics features and essential ingredients for good analysis

- Alpgen
 - ▲ Version: 2.13
 - Showering: Herwig 6.520, Jimmy 4.31
 - PDF: CTEQ6L1
- MC@NLO
 - Version: 4.01
 - Showering: Herwig 6.520, Jimmy 4.31
 - ▲ PDF: CT10
- Powheg-Box
 - ▲ Version: 1.0
 - ▲ Showering: Pythia 6.425
 - ▲ PDF: CTEQ6L1, CT10
- Underlying event tune: AUET2(B)

- Selection
 - lacktriangle One electron with $p_T > 25$ GeV and $|\eta| < 2.47$
 - lacktriangle At least two jets with $p_T >$ 25 GeV and $|\eta| <$ 2.5
 - Missing transverse energy > 40 GeV

Scalar sum of up to four leading jets

MC@NLO / Alpgen

MC@NLO / Powheg

- Selection
 - lacktriangle One electron with $p_T > 25$ GeV and $|\eta| < 2.47$
 - lacktriangle At least one jet with $p_T >$ 25 GeV and $|\eta| <$ 2.5
 - ▲ Missing transverse energy > 40 GeV

Number of jets with $p_T > 25 \text{ GeV}$

MC@NLO / Alpgen

Fit slope par: -1.08e-01 +/- 1.49e-03

MC@NLO / Powheg

* Powheg describes data really very good, but why does it behave like a "Multi Leg generator" and not drops off after 4 jets?

JetCnt_lep [GeV]

- Selection
 - lacktriangle One electron/muon with $p_T > 25/20$ GeV and $|\eta| < 2.47/2.4$
 - lacktriangle At least three jets with $p_T >$ 80, 25, 25 GeV, $|\eta| <$ 2.5, at least one b-tag
 - ▲ Missing transverse energy $\in [30, 120]$ GeV
 - ▲ Transverse mass $\in [40, 80]$ GeV

ALPGEN

Difference in xsection due to scale variation

	NP0	NP1	NP2	NP3	NP4	NP5
	semileptonic $\mathrm{t} \mathrm{ar{t}}$					
up	1.13	1.01	0.92	0.81	0.71	0.59
down	0.85	0.97	1.12	1.26	1.39	1.44
	dileptonic $\mathrm{t} \mathrm{ar{t}}$					
up	1.09	1.00	0.96	0.82	0.73	0.65
down	0.82	0.98	1.14	1.28	1.43	1.65

We want these variations and we would like to have them consistent for all generators, experiments

Example 2: W+jet

- Comparison of Alpgen to Sherpa
- Selection
 - lacktriangle One electron with $p_T >$ 8 GeV and $|\eta| < 2.5$

Number of jets with $\mathrm{p_{T}} > 25 \; \text{GeV}$

- Alpgen has more pT(W) than sherpa and more jets
- data prefer Sherpa pT(W) but Alpgen njet distribution

Example 2:W+jet

- Last time Mark Hohlfeld told that best fit is Alpgen pt(W) scaled to Sherpa
 - Instead of Alpgen/Sherpa reweighting extract correction form fit to data
 - ▲ Fit p_T^Z in data to extract reweighting for p_T^W (using Alpgen MC)
 - ▲ Use several bins of the true p_T^Z (p_T^W)

Before fit

 p_T^Z in Z control region

After fit

Example 2: W+jet

- Instead of Alpgen/Sherpa reweighting extract correction form fit to data
 - ▲ Fit p_T^Z in data to extract reweighting for p_T^W (using Alpgen MC)
 - ▲ Use several bins of the true p_T^Z (p_T^W)

Before fit

After fit

- Need to use data to tune MC (Rivet) where possible
- Cost a lot of manpower, combined effort?

Example 3: Heavy flavor treatment

- Heavy flavour content (Hadron-Level) for different Alpgen and Sherpa Monte Carlo
- Too many heavy flavours in Sherpa NLO (massless treatment)
- Big different in treatment of massless c in Alpgen and Sherpa
- Massive heavy flavours looking very similar

Example 3: Heavy flavor treatment

- Heavy flavour tagging is a important feature at LHC:
 - A lot of searches/measurements use it for background suppression
- Heavy flavour fractions/spectrum(fragmentation functions) and decays should be handled properly
- Very important: overlap-removal from b/c produced in shower and ME
 - Some generator have internal tool (sherpa)
 - some we developed them by our self (Alpgen), ad-hoc, not that cleanly solved but good in most use cases
 - preferable would be a possibility of variation
- Some times it is important to have tool to split sample in different flavour contents and components (from ME, shower, MPI) → data driven reweighting, tuning
- Features of the generator should be communicated (why massless c different in alpgen and sherpa)

Example 4: Pythia8 Wimpy/power shower

- Pythia8 has different default of shower treatment for different powheg lhe_f input processes
- Examples: WW (left), pythia8 behaviour very different vs others. Power shower because no real gluon in lhe_f?
- Right side: default is overwritten and power shower forced (ttbar)

Gap fraction analysis in rivet important tool to constrain shower

Summary

- We have a lot of excellent generator tools
 - newest and best calculations
 - Excellent matching between ME and shower
- We are working on a lot of new generator+shower setup (→ herwig++ and pythia8) and new NLO generator setups (sherpa NLO, aMC@NLO):
 - It would be good to have example setups compared to data or other commonly used generator setups
 - Would be good to compare to rivet if setups agree with data
- For precise data analysis the smallish things are important:
 - Heavy flavour treatment, avoidance of double counting
 - Helicities in decays (taus)
 - Use data to constrain properties (shower, W/Z pt , gap fraction)
 - PDF treatment (4 vs 5 flavor schema)
- If one of the ingredient does not work than you should not wonder that we still use ACER for single Top t-channel unfolding