

TowerJazz High Performance SiGe BiCMOS processes

The Global Specialty Foundry Leader

TOWERRY The Global Specialty Foundry Leader

Comprehensive Technology Portfolio

RF and HPA Applications and Technology

RF and Tuners

- Cell Phone, WiFi TxRx
- **Basestation, Specialty Wireless**
- TV, Satellite, STB Tuners

Front-End Modules

SOI Switch and SiGe Power Amplifiers

- Power Amplifiers
- Antenna Switch
- PA Controllers

mmWave

High Performance SiGe

- Optical Fiber Networks
- Automotive Radar
- 60 GHz WiFi, 24GHz Backhaul
- Light Peak and Thunderbolt
- GPS LNA

High Performance Analog

Complementary BiCMOS

- Line Drivers DSL, HomePlug, ATE
- HDD PreAmp
- DAC, ADC

Best-in-class SiGe, RF CMOS, RF models and Design Enablement

Front-End Module Technology

Controller

RF CMOS Controller Platform

- 5V, 0.18um optimized CMOS
- Up to 50% die size shrink vs. 0.25um
- 1.8V Logic, Bipolar, LDMOS options

Power Amplifier

SiGe PA, through-silicon-via (TSV), IPD

- SiGe PA cells for WiFi and Cellular
- TSV for low-inductance ground
- 1.8/3.3/5V CMOS, high res options
- IPD (5um dual-Cu in development)

SOI Switch

Platform for integration of FEM

- Thin-Film SOI (best in class Ron-Coff)
- Thick-Film SOI for ease of integration
- 5V control, LNA, PA/Driver options

Design Services and IP

Models, design tools and IP

- Example: PA Design Library (PADL)
- Example: 4T, 6T, 9T SOI Switch IP
- Analog / RF Design Services

Best-in-class SiGe, RF CMOS, RF models and Design Enablement

Schematic of Key Features in SiGe BiCMOS platform

 The SiGe HBJTs are embedded into complimentary BiCMOS platforms offering high performance RF, analog and digital performances.

TOWER

SiGe HBJT device structure

 The high-performance bipolar transistors are built "vertically" meaning that the n-p-n structure is created perpendicularly from the top of the wafer down.

TowerJazz High Speed SiGe Processes

		SBC18HA	SBC18H2	SBC18H3	SBC13HA	SBC13H3
Status		Prod.	Prod.	Proto.	Proto.	Devel.
CMOS	Voltages	1.8/3.3V	1.8/3.3V	1.8/3.3V	1.2/3.3V	1.2/3.3V
HS Bipolar	F _T (GHz)	150	200	240	200	240
	F _{MAX} (GHz)	190	200	270	200	270
	BV _{CEO} (V)	2.2	1.9	1.6	1.9	1.6
Capacitor	fF/μm²	2.8/5.6	2/4	2.8/5.6	2.8/5.6	2.8/5.6
Varactor	Q at 20 GHz	10	NA	15	NA	15
LPNP	Beta	32	7	30	7	30

 There are numerous other SBC18 flavors in production with variations in back end configuration, selection of available devices etc.

Presented data mainly from the SBC18H2/H3 flavors.

SiGe HBJT's current and power gain

- 240 GHz Ft / 270 GHz Fmax devices in mass production.
- High frequency performances sustained for wide collector current range.

SiGe HBJT's gain vs DC power density

TowerJazz Devices are optimized for low power consumption.

SiGe HBJT's Noise

- SBC18H4 minimum noise figure at 20Ghz is measured less than 1dB and at 40GHz at only 2dB.
- NFMIN is flat across various frequency ranges.

Circuit examples at ~100GHz: LNAs

- Broad band mm-wave LNAs fabricated in SBC18H2 and SBC18H3
- 4 identical LNAs built for a 4-channel W-band phased-array receiver
- Nearly 30dB of gain above noise floor at 85GHz
- Almost perfect matching between LNAs

RF Grounding: Deep Silicon Vias vs. Through Silicon Vias

 Deep Silicon Vias and Through Silicon Vias are available for enhanced RF grounding.

Bipolar Roadmap

- next generation (SBC18H4) is in final development stage ,Fmax=350Ghz , improved noise figure.
- SiGe NPN on thick film SOI under development.

Summary

- TowerJazz offer SiGe HBJT devices on 0.35µm, 0.18µm and 0.13µm technology nodes.
- TowerJazz SiGe HBJT offers Best in class SiGe Speed / Power and Best in class Noise.
- The SiGe HBJTs are embedded into complimentary BiCMOS platforms offering high performance RF, analog and digital performances.

www.towerjazz.com

Complete SBC18H3 Device Roster

Family	Device	Characteristics		
CMOS	1.8V CMOS	Model-exact copy of all other TJ 0.18um CMOS		
	3.3V CMOS			
Bipolar	HS NPN	240 GHz F _T / 280 GHz F _{MAX}		
	STD NPN	55GHz F _T / 3.2V BV _{CEO}		
	LPNP	β=35		
Resistors	Poly	235 Ω /sq and 1000 Ω /sq		
	Metal	25 Ω /sq TiN on M3		
Capacitors	Single MIM	2 or 2.8 fF/µm²		
	Stacked MIM	4 or 5.6 fF/μm²		
Varactors	1.8V MOS	Q @ 20GHz = 20		
	Hyper-abrupt junction	Q @ 20GHz =15, Tuning Ratio = 21%		
RF Diodes	p-i-n	Isolation <-15dB, Insertion loss > -3.5dB at 50GHz		
	Schottky	F _c > 800 GHz		

SiGe HBJT basic layout-122 configuration

