

In-Source Photoionization Spectroscopy: Methods of data analysis

M.D. Seliverstov

maxim.seliverstov@cern.ch

1st LA³NET Topical Workshop on Laser Based Particle Sources

20-22 February 2013 CERN

Contents:

- Resonant photoionization in-source spectroscopy: advantages and limitations
- General problems of data analysis (isotopes with I = 0) Correction to the laser power

Laser lineshape asymmetry

- Isotopes with I > 0: hyperfine splitting
 - Relative intensities of hfs lines
 - Saturation
 - hfs levels population redistribution
- Conclusions and outlook

Isotope shift $\delta V_{A,A'}$

$$\delta v_{A,A'} = F \lambda_{A,A'} + MS$$

Rms charge radius

$$\lambda_{A,A'} = \delta \langle r^2 \rangle_{A,A'} + C_2 \delta \langle r^4 \rangle_{A,A'} + \ldots = 0.93 \delta \langle r^2 \rangle_{A,A'}$$

Relative line position \rightarrow hyperfine constants $A \& B \rightarrow m_{\mu}, Q_{s}$

Doppler limitation:

Laser linewidth about 1 GHz

$$\delta \omega_{D} = \frac{\omega_{0}}{c} \sqrt{8kT \frac{\ln 2}{m}}$$
For ²⁰⁸Pb at $T_{\text{LIS}} = 2000$ K:

 $\delta \omega_{\rm D}$ = 2.4 GHz (FWHM)

For Pb isotope chain:

 $\delta v_{A,A+1} = 1 \text{ GHz}$

Resonant photoionization in-source spectroscopy

1500

1000

The simplest case:

$$N_i(v) = C_1 \int N_0^G(v') I^L(v-v') dv' + C_0 \qquad \text{(Voigt profile)}$$

General form:

$$\begin{split} N_i(v) &= C_1 \int N_0^G(v') P_i \Big(I^{L'}(v-v') \Big) dv' + C_0 \\ P_i \Big(I^{L'}(v-v') \Big) \neq k \, I^{L'}(v-v') \quad \text{Saturation is possible} \\ I^{L'}(v-v') \quad \text{Laser lineshape can be an asymmetrical function} \end{split}$$

Asymmetry of the fitting function

Additional correction to asymmetry of the lineshape

Optical transition saturation

Saturation broadening

Saturation + desynchronization of the laser pulses

Corrections for desynchronization

Corrections for desynchronization

Hyperfine splitting (hfs)

Hyperfine splitting (hfs)

Position of the hfs lines:

$$v_0^{F,F'} = v_0 - A\frac{K}{2} - B\frac{\frac{3}{4}K(K+1) - I(I+1)J(J+1)}{2(2I-1)(2J-1)IJ} + A'\frac{K'}{2} + B'\frac{\frac{3}{4}K'(K'+1) - I(I+1)J'(J'+1)}{2(2I-1)(2J'-1)IJ'},$$

$$K = F(F + 1) - I(I + 1) - J(J + 1)$$

Relative intensities (simplified form):

$$S_{FF'} \sim (2F+1)(2F'+1) \begin{cases} J' & F' & I \\ F & J & 1 \end{cases}^2$$

Hyperfine splitting (hfs)

$$N_{i}(v) = C_{1} \int N_{0}^{G}(v') P_{i}(I^{L'}(v-v')) dv' + C_{0}$$

To take into account the saturation of transitions, pumping processes between hyperfine structure (hfs) components and a population redistribution of the hfs levels the number of photoions N_{ion} for each frequency step was calculated by solving the rate equations for the given photoionization scheme:

$$\begin{cases} \frac{dN_F}{dt} = \sum_k W_{F'_k F} N_{F'_k} - \sum_k W_{FF'_k} N_F - W_{F,ion} N_F \\ \vdots \\ \frac{dN_{ion}}{dt} = \sum_k W_{F'_k,ion} N_{F'_k} \\ W_{FF'} \sim S^*_{FF'} I(v + \Delta v^{FF'} - v'), \quad S^*_{FF'} = S_{FF'} / (2F + 1) \\ \text{At } t = 0; \quad N_F^0 \sim 2F + 1 \end{cases}$$

King plot for Po isotopes

King plot for Po atomic transitions 843 nm (our data) and 255 nm.

Charge radii of Po isotopes

Rate equations for the polarized light

Rate equations for the polarized light

Universal fitting program

	Universal Fit 🛛 🕹
E:\IS511\Stable_analysis\205aaa.dat	Element Universal TI, 276.8 nm, 2 steps Po, 843.4 nm, 3 steps Atomic Mass Polarization Polarization Polarization
**	Atomic Spin: 193 a.m.u. V Linear Polarization
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
0,000,000,000,000,000,000,000,000,000,	a ^{6⁰ ⁰0000 000}

The laser ion source is not only a very effective in its normal use as an elementselective tool for producing intense ion beams, but it can be used as a very powerful atomic-spectroscopy tool due to the resonance character of the photoionization (In-Source Laser Resonant Photoionization Spectroscopy). In contrast to other laser spectroscopic techniques, in that case the laser frequency scanning procedure is applied directly within the mass-separator ion source. The main advantage of this technique is its very high sensitivity, nevertheless its spectral resolution is Doppler-limited, therefore the accurate data analysis is of great importance.

Thanks for your attention!

