

Laser driver for CTF3 photo-injectors

M.Martyanov, M. Divall, V. Fedosseev, C.Hessler

CERN 21.02.2013

Photoemission and photo-injectors (photo-guns)

Photoemission:

Energy of a photon > Work function

External electric field (DC or RF) helps electrons to become a bunch (beam) after they are extracted from the cathode surface

RF photo-gun

What is not shown here:

- Magnetic coils around the cavity
- Vacuum pumping system
- Water cooling system
- Cathode load-lock system
- Diagnostics etc.

CERN

Photo-injectors at CTF3: CALIFES and PHIN

CTF3 Photo-injector laser specifics:

- Burst mode operation
- Burst rep.rate 1-50Hz
- Intra-burst rep.rate 1.5GHz
- (phase-locked to klystron sub-harmonic)
- Pulses in the burst should be equal (stability)

		Wall Oculi		Dirve beam		
IFES		CALIF	ES/CLIC	PHIN		CLIC
		Design	Achieved	Design	Achieved	Design
Bunch rep.rate, GHz		1.5	1.5	1.5	1.5	0.5
Bunch duration, ps		8-10	8-10	8-10	8-10	8-10
Burst duration max, us		0.14	0.2	1.27	1.27	140
Burst rep.rate, Hz		5	5	5	5	50
Charge/bunch, nC		0.6	0.6	2.3	9.2	8.4
Charge stability, % rms		<3	<3	< 0.25	1-2	< 0.1
Photocathode QE, %		0.3	0.3	3	3	1
Cathode lifetime, h				>50	>100	>150
E _{UV} , uJ/pulse		1	2	0.6	1	8
W _{UV} , kW		1.5	3	0.9	1.5	4

Laser Drivers for CTF3 Photo-injectors

CALIFES amplifier and harmonics

Pulsed mode operation

Nd:YLF rod, 5mm diam, 70 mm long SHG: KTP II-type (oe-e) 11mm FHG: BBO I-type (oo-e) 4.2mm

5 pumping diodes (Dilas Gmbh.) Max 5.5 kW pumping power Pump pulse duration 500us 1-pass gain 12 (3-pass 1700) IR input: 4nJ/pulse IR output: 6uJ/pulse Peak intensity: ~ 100MW/cm2 SHG efficiency: 67%, 4uJ/pulse FHG efficiency: 53%, 2uJ/pulse

PHIN amplifiers and harmonics

Steady-state operation

AMP1 - Nd:YLF 7mm diam, 90mm long AMP2 – Nd:YLF 10mm diam, 120mm long Max diode pump power 16kW (AMP1) and 22kW (AMP2), 500us IR input: 7.6W, 5nJ/pulse IR output AMP1: 3.5kW, 2.3 uJ/pulse (gain 1/3-pass 7.7 / 460) IR output AMP2: 9kW, 6uJ/pulse (gain 1/2-pass 2.2 / 5) Peak intensity: ~ 100MW/cm2 SHG: KTP II-type (oe-e), eff. 56%, 2.8uJ/pulse FHG: BBO I-type (oo-e), eff. 35%, 1uJ/pulse

250

-2000

-1000

2000

1000

0

x, um

Green7mFocus-NewMovedTelescope-90A-90A.tiff

M.Martyanov, C.Hessler, M.Divall, V.Fedosseev

6

CLIC Phase-coding

CLIC Phase-coding tested at PHIN

Feed-back stabilization

CERN

Feed-back stabilization (MHz bandwidth)

feed-back off

feed-back on

<u>Yellow</u> – optical pulse <u>Red</u> – error signal Green – driving voltage

High-power 4th harmonics for CLIC

FHG, BBO 4.2 mm UV and Green bursts oscillograms

de-

LA3NET: 1st Topical Workshop on Laser Based Particle Sources

High-power 4th harmonics for CLIC

FHG, BBO 4.2 mm

UV beam shape for different burst duration

High-power 4th harmonics for CLIC

FHG, BBO 12 mm Just for curiosity or fun

Future plans

□ More of feedback (fast feed-forward, GHz bandwidth)

Powerful UV generation (towards CLIC)

□ 50Hz PHIN amplifiers operation (towards CLIC)

Test Green cathodes Cs_3Sb (avoid powerful UV light generation)

Thank you for your attention !

Acknowledgments and References:

- I.Ross, "Feasibility Study for the CERN "CLIC" Photo-Injector Laser System", CERN-OPEN-2000-301; CLIC-Note-462, (<u>https://cdsweb.cern.ch/record/467721</u>)
- 2. G. Kurdi, I. O. Musgrave, M. Divall, E. Springate, W. Martin, G. J. Hirst and I. N. Ross, "Development of the CTF3 photo-injector laser system", Central Laser Facility Annual Report 2006/2007
- 3. M. Divall, G. Kurdi, I. Musgrave, E. Springate, W. Martin, G.J. Hirst, I.N. Ross, "Design and testing of amplifiers for the CTF3 Photo-Injector Laser", CARE-Report-2006-021-PHIN, (<u>https://cdsweb.cern.ch/record/1089233</u>)
- 4. M. Petrarca, M. Martyanov, G. Luchinin, M. Divall, **"Study of the Powerful Nd:YLF Laser Amplifiers for the CTF3 Photo-injectors**", IEEE J. Quantum Electron. 47 (2011) 306-313
- 5. M. Divall et. al. "Fast phase switching within the bunch train of the PHIN photo-injector at CERN using fiber-optic modulators on the drive laser", Nucl. Instr.&Meth. A, 659 (2011) 1–8

Photoemission and photo-injectors (photo-guns) RF photo-gun: Evolution from a simple idea to a setup

Photoemission and photo-injectors (photo-guns)

RF photo-gun: Evolution from a simple idea to a setup

CERN

CLIC Phase-coding

by the courtesy of Alexandra Andersson, CERN BE-RF-FB