A Large Ion Collider Experiment

ALICE Status Report

Predrag Buncic

RAW Data Volume (Run1)

Disk Usage

Run 1 Data Volume (PB)

- 7.3 PB of raw data collected during RUN1
- 16 PB of derived data produced (MC, ESD, AOD)
- AOD are replicated 3x, ESD 2x

CPU Usage Reconstruction Analysis trains User analysis MonteCarlo

- Average (April-August) CPU usage
 - 6% raw data reconstruction
 - 11% centrally organized analysis (Analysis Train)
 - 9% end user analysis
 - 74 % Monte-Carlo production

Job Profiles

CPU efficiency is still not as good as LHCb and ATLAS, comparable to

A Large Ion Collider Experiment

CPU efficiency

CMS (~80%)

2013-09-21 17:00

6

Dataset popularity service

Popular ESD datasets (>318477.4)

categories

Knowing which datasets are (un)popular allows us to adjust number of file replicas and to eventually reclaim disk space or migrate entire dataset to tape ALICE® | LHCC | 11 June 2013 | Predrag Buncic 7

Improving analysis train performance

Figure 1: Splitting before clean up.

- LHC11a10a AOD090
- reduced number of jobs from 8000 to 3935
- saving time reduced from 9d 4:38 to 3d 18:33 (merging not included)

By spreading the popular datasets over fewer storage elements we can reduce number of individual jobs needed to process given dataset and reduce overheads of I/O and speed up the final merging step.

Figure 2: Splitting after clean up.

CVMFS deployment

- 40 sites installed CVMFS, 11 pending. 5 running in production
- 10700 out of 47777 jobs (22%) running this morning were running on sites where CVMFS was put in production

Upgrade activities O^2 Technical RGANIZATION FOR NUCLEAR RESEARCH ۲ Q Design Report ALICE 10044/052.002.002 10052.002.002 10052.002.002 10052.002.002 10052.002.002 10052.002.002 10052.002.002 10052.002.002 10052.002.002 10052.002.002 10052.002.002 10052.0 Upgrade of the **ALICE** Experiment **TDR** Panel Table of Contents Lol Report ready Setting up Editorial ulletBoard

- CWG1 Architecture
 - System Requirements Specifications document due for October
- CWG2 Tools, guidelines and procedures
 - Reports and presentations templates created
 - Evaluation procedure completed and approved

 - Ongoing activities
 - C++ coding guidelines and standard
 - Tools evaluations:
 - Wiki and Web documentation
 - Code and API documentation
 - Licensing (Copyright and distribution of ALICE O² software)

- CWG3 Dataflow
 - Detector Read-Out
 - Different link protocols under investigation:
 - DDL3 (custom, 10Gb/s), Ethernet (10 40 Gb/s) PCIe over cable (gen2, gen3; 16 - 128 Gb/s)
 - Data Processing
 - Framework prototype to evaluate local and remote flow mechanisms
 - Performance tests on-going
 - Using the open-source packages 0MQ and Apache Zookeeper
 - Simulation
 - OMNeT++ selected as a discrete-event simulation tool, Ptolemy selected for network simulation

- - CWG4 Data model
 - In Run 3 we will work with "time frames" (continuous read-out)
 - Collect and process data in well-delimited time intervals
 - Internal note initiated by CWG4, discussed with trigger and detector electronics coordination

- CWG5 Computing platforms
 - Defined benchmarks: TPC track finder (compute and memory latency) and TPC track fit (compute)
 - In progress: I/O, memory, IPC
 - Platforms: Opteron / Xeon, Atom, ARM, AMD Fusion, AMD GPU. • NVIDIA GPU, Intel Xeon Phi
 - Programming models: OpenCL, OpenMP 4, C++11, Vc, (0MQ) ٠

- CWG 7 Calibration
 - Exploring different approaches
 - Synchronous, running on FLPs and EPNs
 - Asynchronous, running on EPN after data has been stored to local disk buffer

- CWG 7 Reconstruction
 - Concept of calibration/reconstruction with continuous read-out and the expected space-charge distortions demonstrated with a toy model.
 - The tracking based of the CBM experiment's Cellular Automaton algorithms is under evaluation.

CWG8 - Simulation

- Transport Codes
 - Consolidation of transport code (ongoing)
 - Testing with Geant3, Geant4 and FLUKA (ongoing)
 - Profiling results available by October and used as input for
 - Fast simulation requirements (see below)
 - Tuning (= minimisation of computing time)
- Fast simulation
 - Revival of barrel tracking parameterisation (ongoing)
- Monte Carlo Generators
 - Integration of NLO Generators (ongoing)
 - New generators not included in AliROOT as it was the case till now

٠	CWG	9 –	Visua	alisatic	on,	D	QIV	1
		-	_					_

- Reviewing existing ALICE systems (QA analysis, QA Yves, AMORE, event display, etc...)
- Refine mandate and relationship between Run 2 and Run 3

- CWG 10 Control, Configuration and Monitoring
 - Topics assigned to members of CWG10 for further conceptual development

- CWG 11 Software Lifecycle
 - CMake proposed as build system

Summary

- All RUN1 data reconstructed
- The share of MC jobs continues to increase
- Less end user jobs compared to analysis trains
- We continue to work on improving job efficiency by doing proactive data management
- Ongoing Upgrade activities are beginning to deliver the first concrete output useful for TDR due in one year from now