A Large Ion Collider Experiment



#### **ALICE Status Report**

**Predrag Buncic** 



# Status Report

## **New T1 for ALICE**

#### Korea Institute of Science and Technology Information - KISTI

- National research institute for information technology since 1962
  - Around 600 people working for National Information Service (development & analysis), Supercomputing and Networking
- Running High-Performance Computing Facility
  - Total 3,398 Nodes (30,592 CPUs, 300 TFlops at peak), 1,667 TB storage (introduced from 2008)

#### **Global Science experiment Data hub Center - GSDC**

- National project to promote research experiment providing computing and storage resources: HEP and other fields of research
- Running Data-Intensive Computing Facility
  - 30 Staffs: system administration, experiment support, external-relations, administration and students
  - Total 4,232 CPUs, 3,300 TB disk and 1,040 TB tape storage (accumulated since 2007)

#### **History of GSDC**

5 years of the experience running grid computing centre with the collaboration with the ALICE













#### **Grid performance**



Athens + Bandung + Bari + Birmingham + BITP + Bologna + Bratislava + Cagliari + Catania + CCIN2P3 + CERN + CERN + CERN + CERN-CWHS + CERN-L + CERN-HA2 + Clermont
 CNAF + COMSATS + CSC + Cyfronet + DCSC\_KU + FZK + Grenoble + GRIF\_IPNO + GRIF\_IRFU + GRIF\_IRFU-CVMFS + GRIF\_IRFU\_SHARED + GSI\_2 + HHLR\_GU + Hiroshima + IHEP + IPNL
 ISMA + ISS + ISS\_LCG + ITEP + JINR + KFKI + KISTI-CREAM + KISTI\_GSDC + KNU + Kolkata + Kolkata + Kolkata - CREAM + Kosice + LBL + Legnaro + LLNL + LUNARC + Madrid + MEPHI + NECTEC
 NERSC + NIHAM + NIKHEF + NIPNE + OSC + Oxford + pcalice92.cern.ch + PNPI + Poznan + Prague + RAL + RAL\_ARC + RRC-KI + SaoPaulo + SARA + SNIC + SPbSU + Strasbourg\_IRES
 Subatech + SUT + TACC + Torino + Torino-Torrent + Trieste + TriGrid Catania + Troitsk + Trujillo + UIB + UNAM + Yerevan + ZA CHPC + SUM



# **CVMFS** deployment

| Jan 2013             | ✓ Setup Stratum 0 for ALIC   |
|----------------------|------------------------------|
|                      | ✓ Deploy ALICE S/W on C\     |
| Jun 2013             | ✓ Migrate ALICE Repository   |
| <br>July 2013        | ✓Test, test, test            |
|                      | ✓ Start deployment process   |
| Aug 2013             | ✓ Deploy CVMFS repository    |
|                      | ✓ Run AliEn from CVMFS of    |
|                      | Validate and evaluate stab   |
| Dec 2013<br>Apr 2014 | Run AliEn from CVMFS on      |
| Doploym              | ant has to be seedlarstad as |

Ε /MFS y to Stratum 1s s on all ALICE sites but do not use it in production on selected site(s) ility, performance all site(s)

Deployment has to be accelerated on non WLCG sites !



### **Job Profiles**





# **MC Production**

- 113 production cycles from beginning of the calendar year
  - For comparison 123 cycles in 2012; 639,597,409 events
  - Until end December equal number of cycles projected
- 927,590,669 events
  - All types p+p, p+A, A+p, A+A
  - Anchored to all data-taking years from 2010 to 2013
  - Special emphasis on MC for data taken in 2012/2013
- No backlog on production requests



### **RAW data**

- Completed
  - All RAW data collected in 2012-2013 is processed at least in Pass1 (some periods have Pass2)
- Plans
  - Re-processing of LHC11 p-p data (all periods)
    - With Cpass0/Cpass1
    - On standby, waiting for code updates
    - Delayed for >4 months
  - Re-processing of 2010 p-p data (selected periods)
    - To follow-up the 2011 periods reconstruction
    - Perhaps also with Cpass0/Cpass1

A Large Ion Collider Experiment



#### Job efficiency (T1s)





#### Job efficiency at "CERN"





#### **TFilePrefetch**

• Separate thread reading ahead data blocks



Room for up to 10% improvement in efficiency at the expense of memory/disk



# Summary

- Production in 2013 OK on all levels
- Sufficient resources to fulfill all requests
- Some backlog exists on the level of old RAW data reconstruction and associated MC
- CVMFS deployment deadline advanced to end of 2014



# **Computing Model Update**



# ALICE Computing Model Update

#### Scope

- Covers period until 2017 (Run2)
- TDR for Run3 and beyond in preparation
  - Due September 2014
- Physics goals
  - Reach the integrated luminosity of 1nb<sup>-1</sup> of Pb-Pb collisions
  - Extend the reach of several measurements crucial for the understanding of the basic properties
  - Consolidate preliminary observations from the Run 1 data



# **Detector Upgrade during LS1**

- Increased TRD coverage (60 -> 100%)
- New electromagnetic calorimeter (DCAL)
- Upgrade of readout electronics TPC, TRD – readout speed x 2
- DAQ and HLT upgrade to handle increased data rates

- 2x bandwidth to Castor (8GB/s)

25% event size increase
 – New detectors, higher energy



# Software development timeline



|          | Run 1    |          |          | .S1      | Run 2    |          |          | LS2      | Run 3    |     |          | LS3      |     | Run 4   |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|----------|----------|-----|---------|
| 201<br>0 | 201<br>1 | 201<br>2 | 201<br>3 | 201<br>4 | 201<br>5 | 201<br>6 | 201<br>7 | 201<br>8 | 201<br>9 | 202 | 202<br>1 | 202<br>2 | 202 | 2024-26 |



# AliRoot 5.x

- Calibration
  - Moving time consuming Cpass0 to Online
- Reconstruction
  - Using HLT tracks seeds in Offline reconstruction
- Simulation
  - Move from G3 to G4
  - Developing and using alternative simulation strategies (fast and parameterized MC)



# **Distributed Computing**

- Adapting to Cloud environments
- Use of HLT resources for Offline computing

   ALICE HLT is still relatively small (O(1000) cores) due to extensive use of GPUs in HLT
- Improving performance of analysis trains
   Simplifying AOD model
  - Active data management based on data popularity
- Use of HPC resources for simulation
- Long term solution for data management



### **Data Management Evolution**



03.12.2013



# AliRoot 6.x

- New modern framework targeting Run3
- Should work in Online and Offline environment
- Based on new technologies
   Root 6.x, C++11
- Optimized for I/O

   New data model
- Capable of utilizing hardware accelerators – FPGA, GPU, MIC…
- Support for concurrency



#### Multi-processing vs. Multi-threading

- Different processes are insulated from each other by the OS, an error in one process cannot bring down another process.
- Error in one thread can bring down all the threads in the process.

- Inter-process communication can be used across network
- Inter-thread communication is fast

#### **FairRoot Framework**





- Common software framework used by several experiments at GSI/FAIR
- Similar time constraints and data taking requirement
  - continuous readout, time frames instead of events



- ROOT event loop
- User code in Task hierarchy
- Task hierarchy runs sequentially in one process
- Tasks implement only algorithms (can be exchanged/replaced)





ØMQ

- Each Task is a process (can be Multi-threaded)
- Message Queues for data exchange
- Support multi-core and multi node





### Next step

- Learn from others and work together
  - 0MQ approach of FairRoot looks as an appropriate solution for our Online/Offline problem
  - Possible collaboration with between ALICE and FAIR on the future framework
    - We will start prototyping new framework based on FairRoot but aiming to create a new iteration that could be used by ALICE and FAIR experiments

- Keep an eye on all approaches to concurrency