Jet Algorithms

(thanks to Gavin Salam, LPTHE for these ideas...)

"If all you need to do is a rough job (e.g. discover a huge 1 TeV Z' peak) then you needn't worry about how you define your jets." Any jet algorithm will pick them out for you!

• Where details of jet finding matter:

- Extracting precise masses and couplings (You need control over what you're measuring.)
- Extricating complex signals from background (You need maximal information about each event.)
- Comparing to NLO, NNLO

(They may only make sense / converge with proper jet algs.)

1

Comparing between experiments

(Compare apples to apples.)

) Jet Algorithms (cont.)

"I don't understand what all the fuss is about — why don't they [Tevatron] just use the k_T algorithm?" ...ex-director of a large French particle-physics lab

- There are a multitude of scales, and we must understand how they interact with each jet algorithm.
 - LEP: p_T (hadronic) ~ 0.5 GeV / unit rapidity
 - Tevatron: p_T (UE) ~ 2.5 5 GeV / unit rapidity
 - LHC: p_T (pileup) ~ 25 50 GeV / unit rapidity
- The choice is not restricted to simply k_T and "cone."
 - There are at least ~5 cone algorithms (UA1, iterative, JetClu, Midpoint, SISCone)
 - k_T can be used in a range of ways (inclusive, exclusive, subjets...)
- Different algorithms have complementary strengths and weaknesses
 - Choose the right one for the occasion or use several, and gain robustness
 - We should understand the quantitative features of the algorithms, and use the information to help us do a better job.
- We really do need to stick to infrared and collinear safe tools

Continuing to improve theoretical predictions...

- Need NNLO calculations for jets at HERA!
- Combining parton shower with NLO
- Heavy Flavor: for *b*-jets, using a good theoretical definition can reduce NLO uncertainties from 40-60% to 10-20% (Banfi, GPS & Zanderighi)

Forward Jets

- We need a model for LHC energies...
 - Do we need to go to higher order matrix elements?
 - Or does the evolution need to be changed?

Quark-Gluon Discrimination

- Various tools developed at LEP and HERA
- Can they be used in (e.g. in searches) at the LHC? (Many signals: quark jets; backgrounds: gluon jets)
- Can techniques be improved?

Multiple Parton Interactions

(thanks to Rick Field, U. Florida for these ideas and plots...)

- Our understanding of MPI in our current data needs work...
- Measurement of MPI in 4-jet production at the Tevatron?
- Tuning of MPI in Monte Carlo continues...

Jay R. Dittmann / Baylor / CDF

Final State - Discussion

Workshop on Low x Physics — 1 September, 2007

Jay R. Dittmann / Baylor / CDF

Final State - Discussion

Workshop on Low x Physics — 1 September, 2007

6

7

Underlying Event

(thanks to Rick Field, U. Florida for these ideas and plots...)

• We are making good progress in understanding and modeling the "underlying event". *However, we do not yet have a perfect fit to all the features of the CDF "underlying event" data!*

Jay R. Dittmann / Baylor / CDF Final State - Discussion Workshop on Low x Physics — 1 September, 2007

0

- agreement good.
- Data/PYTHIA agreement good provided PARP(67)
 = 1.0 change to 4.0 (i.e. like Tune A, best fit 2.5).

Underlying Event (cont.)

	PYTHIA 6.2 CTEQ5L				-
Parameter	Tune A	Tune DW	Tune DWT	ATLAS	
MSTP(81)	1	1	1	1	
MSTP(82)	4	4	4	4	
PARP(82)	2.0 GeV	1.9 GeV	1.9409 GeV	1.8 GeV	╽┍─╨
PARP(83)	0.5	0.5	0.5	0.5	
PARP(84)	0.4	0.4	0.4	0.5	
PARP(85)	0.9	1.0	1.0	0.33	(c)
PARP(86)	0.95	1.0	1.0	0.66	(Ge/
PARP(89)	1.8 TeV	1.8 TeV	1.96 TeV	1.0 TeV	ed P
PARP(90)	0.25	0.25	0.16	0.16	Charo
PARP(62)	1.0	1.25	1.25	1.0	erse"
PARP(64)	1.0	0.2	0.2	1.0	ansve
PARP(67)	4.0	2.5	2.5	1.0	
MSTP(91)	1	1	1	1	
PARP(91)	1.0	2.1	2.1	1.0	
PARP(93)	5.0	17	15.0	5.0	
	-	<u> </u>		<u> </u>	-
Identica ATLA	nl to DW at 1 S extrapolat	1.96 TeV bu tion to the L	t uses HC!		
AILA	5 extrapolar				

Shows the "transverse" charged average p_T, versus P_T(jet#1) for "leading jet" events at 1.96 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI).