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Outline

build a simple toy-model: evolution based on:

based on high-energy QCD QCD (dipole model + JIMWLK saturation)

easily simulated with and without running coupling

Known properties:

Mean-field approximation: geometric scaling

Fixed-coupling fluctuations: diffusive scaling

New results:
Pomeron loops together with Running coupling effects

Conclusions and perspectives
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Reaction-diffusion in high-energy QCD

Dipole model:

∂ᾱY T (r; Y ) = χBFKL ⊗ T (r; Y ) − T 2(r; Y ) +
√

κα2
sT (r; Y )ν(r; Y )

sF-KPP equation in statistical physics:

∂ᾱY u(r; Y ) = (∇2
r + 1)u(r; Y ) − u2(r; Y ) +

√

u(r; Y )/Nν(r; Y )

Linear growth (BFKL)

saturation (BK)

discretisation effects (fluctuations, pomeron loops)
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√

κα2
sT (r; Y )ν(r; Y )

sF-KPP equation in statistical physics:

∂ᾱY u(r; Y ) = (∇2
r + 1)u(r; Y ) − u2(r; Y ) +

√

u(r; Y )/Nν(r; Y )

Linear growth (BFKL)

saturation (BK)

discretisation effects (fluctuations, pomeron loops)

High-energy QCD evolution ≡ reaction-diffusion problem

A ⇋ A + A Ai → Ai±1

Saturation ≡ recombination in the wavefunction
BUT: This is effective: there is no dipole recombination in QCD
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The JIMWLK saturation mechanism

Colour Glass Condensate: evolution a la JIMWLK

WY [αa]

δY

WY +δY [αa]

≡

WY [αa]

Coherent emission of new gluons
saturation ≡ saturation of the rate of emission

Classical field: no discretisation, no fluctuation
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A toy model for high-energy scattering (1/2)

IDEA: a model with fluctuations and saturation a la JIMWLK

stochastic with discrete particle number (fluctuations)

only emissions with a saturating rate (JIMWLK)

Master equation (xi = log(r2
i ))

∂Y P (~n; Y ) =
∑

i

fi(~n − ~ei)P (~n − ~ei; Y )
︸ ︷︷ ︸

gain

− fi(~n)P (~n; Y )
︸ ︷︷ ︸

loss

P (~n; Y ) ≡ probability to have ni particles at lattice site i and rapidity Y

fi(~n) ≡ deposit rate i.e. probability to emit a new gluon at site i from
the ~n gluons present
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Master equation (xi = log(r2
i ))

∂Y P (~n; Y ) =
∑

i

fi(~n − ~ei)P (~n − ~ei; Y )
︸ ︷︷ ︸

gain

− fi(~n)P (~n; Y )
︸ ︷︷ ︸

loss

factorized scattering between left and right movers

S(Y ) =
∑

~m,~n

PL(~m; Y0)PR(~n; Y − Y0)
∏

i,j

σ
minj

ij

σij = 1 − τij , with τij = O(α2
s) the elementary scattering
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IDEA: a model with fluctuations and saturation a la JIMWLK

stochastic with discrete particle number (fluctuations)

only emissions with a saturating rate (JIMWLK)

Master equation (xi = log(r2
i ))

∂Y P (~n; Y ) =
∑
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fi(~n − ~ei)P (~n − ~ei; Y )
︸ ︷︷ ︸

gain

− fi(~n)P (~n; Y )
︸ ︷︷ ︸

loss

factorized scattering between left and right movers

S(Y ) =
∑

~m,~n

PL(~m; Y0)PR(~n; Y − Y0)
∏

i,j

σ
minj

ij

σij = 1 − τij , with τij = O(α2
s) the elementary scattering

boost invariance ∂Y0
S(Y ) = 0 to constrain fi
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A toy model for high-energy scattering (2/2)

(Modulo a couple of simple assumptions) this fixes the emission/deposit rate

fi(~n) =
αs

τ

∏

j

(
1 − σ

nj

ij

)
∝







αsn at small densities

1/αs at saturation
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A toy model for high-energy scattering (2/2)

(Modulo a couple of simple assumptions) this fixes the emission/deposit rate

fi(~n) =
αi

τ

∏

j

(
1 − σ

nj

ij

)
∝







αsn at small densities

1/αs at saturation

Fixed coupling: τxy = α2 exp(|x − y|) = α2r2
</r2

>

Running coupling: α2 → αxαy

Same type of hierarchy as for the dipole picture e.g.

Dipole-target amplitude: ∂Y 〈Tx〉 = αx

∫

z

e|x−z| 〈Tz(1 − Tx)〉

Contains “BFKL”, saturation and flucts.; Mean-field: 〈TxTz〉 = 〈Tx〉 〈Tz〉
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Analytic results

Universality at play: everything goes as for the BK/pomeron-loops equations:

Linear Kernel (by Mellin transform): χ(γ) = 1
1−γ2

“critical” parameters for mean-field saturation physics: γc, vc, χ′′
c

All (qualitative) “standard results” recovered:
geometric scaling for mean-field, diffusive scaling with pomeron loops

see Guillaume Beuf’s talk for the detailed analytic results

In what follows, we compare (numerically)
mean field vs. pomeron loops at fixed and running coupling
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Fixed coupling results:
We recover the “traditional features” of the dipole evoluti on
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Fixed coupling results

Monte-Carlo simulation of the particle process
Initial condition: n(x, Y = 0) = N0Θ(x0 − x)

x

〈T
〉

100806040200

1

0.1

0.01

Universality: same properties as in QCD/sFKPP

Event-by-event: geometric scaling + fluctuations in the tail

Average: violations of geometric scaling
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Fixed coupling: saturation scale statistics
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〉
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2
= DαsY

Mean-field: v → vmean field, D = 0 for all αs

Fluct.: v < vmean field. αs ր ⇒ v ց, D ր

Order of magnitude: σ2 ≫ 1, D ∼ 1
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Our toy model lies in the universality class of sFKPP!

What survives with running coupling?

G. Soyez Low-x 2007, August 29-September 1, Helsinki, Finland Pomeron Loops and running αs – p. 11/17



Running coupling: saturation scale
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asymptotic

The “time” variable is now
√

Y/β instead of αsY

Same effects observed

much less important than with fixed-coupling!!!
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Running coupling: dispersion
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Again: σ2 ∝ D
√

Y/β with D increasing with coupling strength

Order of magnitude: σ2 ∼ 1, D ≪ 1

(fixed coupl.: Order of magnitude: σ2 ≫ 1, D ∼ 1)
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Pomeron loops & running αs

Pomeron-loop effects
much less important
with running coupling
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checked up to Y = 400 !!!

checked with different initial conditions

checked with different IR regularisations of αs

Asymptotic results should be reached but much later than

(i) with fixed coupling,

(ii) relevant for phenomenology
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Argument: formation time

T

1

α2
s

x

last occupied bin

rare fluct.

exp(−γcx)
Competition between

1. BFKL-like evolution
1. of the fluctuation

2. Front evolution to the right

Fluctuations start when geometric scaling window down to T ≈ α2
s

⇒ formation time to get a front of length L = log(1/αs)/γc:

Fixed coupling: Yform ≈ (1/αs)L
2 ∼ 5 − 10 for αs = 0.2

Running coupling: Yform ≈ βL6 ∼ 400 for β = 0.72

⇒ Fluctuations come out much later with running coupling
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Note on geometric scaling

All this suggests that BK/Mean-field + running coupling is sufficient
⇒ we’re happy with BK’s geometric scaling!
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Note on geometric scaling

All this suggests that BK/Mean-field + running coupling is sufficient
⇒ we’re happy with BK’s geometric scaling!

BUT: The reduced front (eγc(x−xs) T ) shows a slowly-growing
geometric-scaling window !

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-10 -5  0  5  10  15  20  25

T
(x

-x
s,

Y
) 

eγ c
(x

-x
s)

x-xs

Y=10,20,...,100

Haven’t we also thrownaway geometr
away geometric scaling?away geomet

G. Soyez Low-x 2007, August 29-September 1, Helsinki, Finland Pomeron Loops and running αs – p. 16/17



Note on geometric scaling

All this suggests that BK/Mean-field + running coupling is sufficient
⇒ we’re happy with BK’s geometric scaling!

BUT: The reduced front (eγc(x−xs) T ) shows a slowly-growing
geometric-scaling window !
Hopefully, an approximate/effective scaling seems to hold
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Conclusion and perspectives

Conclusions:

We have a toy model that mimics high-energy evolution in QCD

Allows to study pomeron-loops effect with fixed and running αs

Pomeron loop effect killed by running αs

Mean-field approximation and running coupling are valid

TODO:

Is that true for other models such as sFKPP?
(under study, we do expect universality)

Effects should subsist in dilute-dilute collisions i.e. in the approach to
saturation (under study)

More involved analysis with mean-field and running coupling to test
geometric scaling

Take into account impact parameter (under study)
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