Overview of saturation

Yoshitaka Hatta
(Saclay)

Low-x meeting, 2007, Helsinki

Outline

- BFKL and beyond
- Saturation momentum
- The BK-JIMWLK equation
- Fluctuations \& Correlations

Regge limit of QCD

One of the most challenging problems in QCD is the understanding of its high energy limit.

Can we compute hadron-hadron (nucleus) cross sections in this regime from first principles?

Deep Inelastic Scattering

The BFKL Pomeron

Balitsky, Fadin, Kuraev, Lipatov, `75~78

Ways to go - beyond BFKL

LLA BFKL predicts indefinite growth of the gluon number.
Infrared diffusion invalidates perturbative treatment in the middle of the ladder.

Must be tamed (How?)

- Many reggeized gluon exchange à la BKP
- Next to leading-log approximation (NLLA)

Donlinear equations from gluon saturation

High energy QCD as an integrable model

Lipatov, `93
Faddeev \& Korchemskly, ‘94

$s=0$ Heisenberg spin chain

$$
H_{B K P}=H+\bar{H}
$$

$$
H=\sum_{n=1}^{N}\left(2 \psi(1)-\psi\left(-J_{n, n-1}\right)-\psi\left(J_{n, n-1}+1\right)\right)
$$

The BKP Hamiltonian is identical to that of an exactly solvable system. Eigenvalue $\boldsymbol{\omega}$ (\rightarrow energy dependence S^{ω}) obtained by the Bethe ansatz

Ways to go - beyond BFKL

LLA BFKL predicts indefinite growth of the gluon number.
Infrared diffusion invalidates perturbative treatment in the middle of the ladder.

Must be tamed (How?)

- Many reggeized gluon exchange à la BKP
- Next to leading-log approximation (NLLA)

Donlinear equations from gluon saturation

Saturation criterion : hadron

Collinear or kt factorization :
One parton from each hadron scatters. Partons inside a hadron do not interact.
\longrightarrow exponential growth in number

When $Q^{2}<Q_{s}^{2}(x)$ gluons begin to overlap...

Saturation criterion : nucleus

A large nucleus $(A \rightarrow \infty)$ is a dense system from the beginning.

McLerran \& Venugopalan `94

$$
Q_{s}^{2} \propto A^{1 / 3}
$$

At the same time, multiple scattering becomes unsuppressed. (Glauber-Mueller)

The saturation momentum at LLA

Gribov, Levin, Ryskin, `83

Find the line of constant amplitude in the BFKL solution.

$$
\begin{aligned}
& x G\left(x, Q^{2}\right) / Q^{2} \\
& \propto \int d \gamma \exp \left\{\chi(\gamma) Y-(1-\gamma) \ln Q^{2} / \Lambda^{2}\right\} \\
& \text { increase with } Y
\end{aligned}
$$

$$
\chi(\gamma)
$$

The new phase of QCD

Evolution in the presence of saturation

Incoming hadrons (nuclei) are replaced by non-Abelian Weizsacker-Williams fields of strength $\sim 1 / g$

Need to sum all orders in $g A^{+}$, or $g A^{-}$, or both in a single step of evolution

The long and winding road to unitarity...

NLO BK
(Coming soon !)

The BK-JIMWLK equation

Dipole-nucleus scattering (subprocess of DIS)

$$
\begin{aligned}
T_{Y}(x, y) & =1-\frac{1}{N_{c}}<\operatorname{Tr}\left[V_{x}^{+} V_{y}\right]>_{Y} \\
V_{x} & =P \exp \left\{i g \int_{-\infty}^{\infty} d x^{+} A^{-}\left(x^{+}, x_{\perp}\right)\right\}
\end{aligned}
$$

$$
\frac{\partial}{\partial Y} T_{Y}(x, y)=\frac{\bar{\alpha}_{s}}{2 \pi} \int d^{2} z \frac{(x-y)^{2}}{(x-z)^{2}(z-y)^{2}}
$$

$$
\times\{T(\underbrace{x, z)+T(z, y)-T(x, y)}-\langle\underbrace{T(x, z) T(z, y)\rangle}\}_{Y}
$$

BFKL
gluon recombination
`Mean field’ approximation

$$
\langle T(x, z) T(z, y)\rangle \approx T(x, z) T(z, y)
$$

The geometric scaling

The scaling persists even when $Q^{2} \gg Q_{s}^{2} \quad$ Iancu, Itakura \& McLerran, `02
Mapping onto the traveling wave solution of the FKPP equation

$$
\partial_{t} f=\partial_{x}^{2} f+f-f^{2} \quad \text { Munier \& Peschanski, `03 }
$$

Some indication in the HERA data

Stasto, Golec-Biernat \& Kwiecinski, `01 Marquet \& Schoeffel, `06 (diffraction)

Application to other processes

$$
\rightarrow \text { Talk by Marquet }
$$

Inclusive \& exclusive
Saturation prediction $\sigma_{d i f f} / \sigma_{t o t} \propto 1 / \ln Q^{2} \quad$ Independent of x !

- pA (and AA) collisions at RHIC

Multiplicity, pt distribution, heavy quark, $R_{p A^{\prime}}$ limiting fragmentation, etc.
Saturation models confront RHIC data, doing well.

- Odderon

The BLV solution : constant in energy
Saturation effects tend to suppress the odderon amplitude.

Beyond BK—JIMWLK

What's missing in the BK-JIMWLK?

Not symmetric w.r.t. the target and projectile, Saturation effect of the projectile missing.

The gluon number fluctuation

QCD dipole model

Significant consequences in the approach to unitarity. Deep connection to the stochastic FKPP equation in statistical physics.

$$
\partial_{t} f=\partial_{x}^{2} f+f-f^{2}+\varepsilon \sqrt{f} \cdot \xi
$$

Universal behavior of the sFKPP equation

Iancu, Mueller, Munier, `04
Front position (saturation scale Q_{s}^{2}) becomes a random variable

Observed amplitude is obtained after averaging over events.
Each event shows geometric scaling, but the average does not!

Factorization `maximally’ violated

$$
\langle T T T \cdots\rangle \approx\langle T\rangle
$$

Updating the phase diagram

LHC, cosmic ray ??

HERA?

Caveats: Requires enormous energy for the fluctuation to become significant. Running coupling may be (very) important.
\rightarrow Talks by Beuf, Kozlov, Soyez

Power-law correlation in the transverse plane

Y.H. \& Mueller, '07

Small-x gluons are correlated because they come from a common ancestor.

$$
d P=\bar{\alpha}_{s} \frac{(x-y)^{2}}{(x-z)^{2}(z-y)^{2}} d^{2} z d Y \quad \longrightarrow \quad \text { (correlation) } \propto\left(\frac{1}{x_{a b}}\right)^{L}
$$

Determination of the power

Dipole pair density

$$
\begin{aligned}
& n_{Y}^{(2)}\left(x_{01}, x_{a_{0} a_{1}}, x_{b_{0} b_{1}}\right)=\int d h d h_{a} d h_{b} \frac{1}{2 x_{a_{0 a 1}}^{2} x_{b_{0} b_{1}}^{2}} \int_{0}^{Y} d y e^{\chi(h) y+\left(\chi\left(h_{a}\right)+\chi\left(h_{b}\right)\right)(Y-y)} \\
& \times \int d^{2} x_{\alpha} d^{2} x_{\beta} d^{2} x_{\gamma} E^{h, \bar{h}}\left(x_{0 \gamma}, x_{1 \gamma}\right) E^{h_{a}, \bar{h}_{a}}\left(x_{a 0 \alpha}, x_{a_{1} \alpha}\right) E^{h_{b}, \bar{h}_{b}}\left(x_{b_{0} \beta}, x_{b_{1} \beta}\right) \\
& \times \int \frac{d^{2} x_{2} d^{2} x_{3} d^{2} x_{4}}{x_{23}^{2} x_{34}^{2} x_{42}^{2}} E^{h, \bar{h}^{*}}\left(x_{2 \gamma}, x_{3 \gamma}\right) E^{h_{a}, \bar{h}_{a} *}\left(x_{2 \alpha}, x_{4 \alpha}\right) E^{h_{b}, \bar{h}_{b} *}\left(x_{3 \beta}, x_{4 \beta}\right),
\end{aligned}
$$

Peschanski, `97 Braun \& Vacca, `97
Breakdown of factorization from BFKL. Explicit !

$$
\left\langle T\left(x_{a}\right) T\left(x_{b}\right)\right\rangle \propto\left\langle T\left(x_{a}\right)\right\rangle\left\langle T\left(x_{b}\right)\right\rangle \overbrace{\underbrace{x_{a b}^{2\left(2 \gamma-\gamma_{0}\right)}}}^{\frac{1}{\sim}}
$$

Summary

- Quest for unitarity : a difficult but fascinating problem Continual efforts \& progresses, still many open questions
- BK-JIMWLK equation : the best 'simple’ equation including nonlinear effects.
- Beyond the BK-JIMWLK : Pomeron loops. Hadron wavefunction teems with correlations and fluctuations.

Important theoretical problems

- Full inclusion of Pomeron loops, and its physical consequences. \rightarrow Talks by Levin and Lublinsky
- Gluon production in AA collision, quantum evolution.

Gelis, Lappi, Venugopalan `07

- NLO BK phenomenology

Balitsky `06, Kovchegov, Weigert `06, Balitsky, Chirilli, to appear

- Saturation in AdS/CFT?
\rightarrow Talk by Y.H.

