Exclusive Central Production at the Tevatron (-> LHC)

Mike Albrow (Fermilab) for the CDF Collaboration

Introduction, definitions, prehistory & other places

Exclusive lepton pairs: $\gamma \gamma \rightarrow e^+ e^-, \mu^+ \mu^- (QED)$

Photoproduction, $\gamma + IP \rightarrow J / \psi, \psi', Y (1S, 2S, 3S) Z (LHC??)$

D IP E : IP + IP $\rightarrow \chi_c, \chi_b$ IP + IP $\rightarrow \gamma \gamma$ IP + IP $\rightarrow J+J, bJ + bJ$ IP + IP $\rightarrow H \rightarrow b\overline{b}$ or WW/ZZ + some diffraction

Central Exclusive Production

"Vacuum Excitation"

... both protons coherently scattered. Central state fully specified and measured. As distinct from "inclusive" production: e.g. J/psi + "anything"

Central Exclusive Production in Different Machines

In e^+e^- collisions (LEP energies \rightarrow I L C) : $\gamma\gamma \rightarrow l^+l^-, q\overline{q} \rightarrow$ hadrons, and at high energy: $WW \rightarrow WW, WW \rightarrow Z, WZ \rightarrow W?$

In ep collisions (HERA) : gamma-IP \rightarrow vector mesons $\rho, \phi, J/\psi, Y$ $\gamma \gamma \rightarrow l^+ l^-$ ($q \overline{q}$ too but buried?)

New in

In pp $(p\overline{p})$ (ISR \rightarrow Tevatron and LHC): IP IP \rightarrow hadrons (can be single hadron), Higgs, $\gamma \gamma$ γ -IP \rightarrow vector mesons (... Y, Z(allowed but tiny)?) $\gamma \gamma \rightarrow \mathbf{l+l-} (q \overline{q} \text{ too but buried?})$

CDF

In AA (RHIC, LHC) mainly $\gamma\gamma \rightarrow l^+l^-$ (E-fields) γ -IP and IP+IP

Central Exclusive Production

 $pp \rightarrow p$ X p where X is a simple system completely measured

Central Exclusive Production of Higgs Bosons (LHC)

Gluon-gluon fusion + bleaching gluon exchange

 $M_{\rm CEN} = \sqrt{(p_1 + p_2 - p_3 - p_4)^2}$

 $\begin{array}{ll} q - loop : \gamma\gamma & c - loop : \chi_c \\ b - loop : \chi_b & t - loop : H \end{array}$

Theory can be tested, low x gluonic features of proton measured with exclusive $\gamma\gamma$, χ_c^0 and χ_b^0 production.

Advantage: F.S. not strongly interacting Disadvantage: v.small cross section, experimentally difficult.

Hadrons with same quantum numbers as Higgs.

CDF Detector at Fermilab Tevatron

980 GeV pbar

<u>980 GeV p</u>

Mike Albrow

Central Exclusive Production in CDF

Exclusive Two Electron Event

Run/Event 195762/3788

Central track chamber hits

Calorimeter "lego plot"

M(ee) = 30 GeV! (another has M = 38.4 GeV!)

LPAIR: MC, QED + p form factors $M(e^+e^-), \Delta \phi, p_T(e^+e^-)$ distributions agree $\sigma(LPAIR) = 1.71 \pm 0.01 \text{ pb}$ $\sigma(CDF) = 1.6^{+0.5}_{-0.3} \pm 0.3 \text{ pb}$ 16 events b/g = 2.1+07-.3 First observation of $\gamma\gamma \rightarrow X$ in had had

Phys Rev Lett 98, 112001 (2007)

Central Exclusive Production in CDF

Search for Exclusive Lepton Pairs II: $\mu^+\mu^-$

Continue study of $\gamma\gamma$ collisions : QED and luminosity calibration at LHC, $\mu^+\mu^-$ easier than e+e- (?) (must be done with pile-up). Forward p-spectrometer calibration if p detected (FP420!) Look for exclusive vector mesons (photoproduction γ -IP \rightarrow V)

Two triggers in CDF:

(1) $\mu^+\mu^-$ (p_T > 1.5 GeV/c), M($\mu^+\mu^-$) = 3.0 – 4.0 GeV, BSC - veto

(2) $\mu^+\mu^-(p_T > 4.0 \text{ GeV/c}), M(\mu^+\mu^-) > 8.0 \text{ GeV}$

Low mass: continuum & $J/\psi, \psi'$, superclean (no pile-up) High mass: continuum & Y(1S), Y(2S), Y(3S) ... allow pile-up Can we select exclusive events among others? Does final sample contain "supercleans" (4% - 8% expected)?

Mike Albrow

from $\chi_c \rightarrow J/\psi + \gamma$ underway.

Mike Albrow

Central Exclusive Production in CDF

Exclusive $\mu^+\mu^-$ candidates (High mass)

Y Photo-production and exclusive $\gamma \gamma \rightarrow \mu^+ \mu$ pairs

Q: Can exclusives be found using $n_{assoc_tracks} = 0$ & kinematics ? $\Delta \phi \approx 180^{\circ}, \Delta p_T \approx 0 \quad (\text{or } \Sigma \vec{p}_T \approx 0)$

Trigger: 2 central muons with pT > 4 GeV/c $L = 890/pb \sim 2.3$ M events. Remove cosmic rays (timing + colinearity) Require on beam-line. Count additional (associated) tracks n_ass within 5 cm of $\mu^+\mu^-$ vertex.

Number of associated tracks on mumu vertex

$7.0 < M(\mu + \mu -) (GeV/c^2) < 9.2$ Below Upsilon region

$M(\mu+\mu-)$ (GeV/c²) > 10.5 Above Upsilon region

n_ass \rightarrow

 $n_{ass} \rightarrow$

Excesses in bin 0 : candidates for $\gamma \gamma \rightarrow \mu^+ \mu^-$ Cleanliness, backgrounds and acceptances being studied. Number of events "reasonable" for QED process, Luminosity.

Invariant Mass Distribution - Upsilon Region

All (inclusive) in sample in Y region

Branching ratios for μ+μ- channels: Y(1s)[9.46 GeV] : 2.5% Y(2s)[10.02 GeV] : 1.3% Y(3s)[10.36 GeV] : 1.8%

$\Delta \phi > 120^{\circ}, p_{\rm T}(\mu^+ + \mu^-) < 7 {\rm ~GeV/c}$

Clearly visible peaks Y(1s) and Y(2s), perhaps Y(3S) too. + continuum

Now apply "superclean" exclusivity cuts as in ee and low mass $\mu^+\mu^$ i.e. no pile-up, and no detected particles except $\mu^+\mu^-$

> 145 events in 8 GeV – 12 GeV region \rightarrow 6 events + 4 M($\mu^+\mu^-$) > 12 GeV. (Most of reduction is killing pile-up)

> > **Superclean Upsilon**

Use these to understand backgrounds of full (pile-up) sample.

M ~ 9.4 GeV

Central Exclusive Production in CDF

Lego, threshold ET > 10 MeV

Mike Albrow

Exclusive χ_c search: $p \overline{p} \rightarrow p \chi_c \overline{p}$

Predictions for Tevatron F.Yuan ds/dy ~ 150 nb

In reality: BR($\chi_c^o \rightarrow J/\psi \gamma \rightarrow \mu^+ \mu^- \gamma$)

× no other interaction × acceptance(trig)

 \Rightarrow few pb (1000's in 1 fb⁻¹)

M.Rangel et al (+**Royon,Peschanski**) 60 pb with CDF cuts Difficulty is soft photons, and "background" from photoproduction: $\gamma + IP \rightarrow J/\psi$

Candidate events

{Measuring forward $p \rightarrow$ central quantum numbers 2+ forbidden at t=0 for $q\bar{q}$ state}

 $I^{G}J^{P} = 0^{+}0^{+} \leftarrow$ Isotopic spin, spin, G-parity, parity same as Higgs boson

Central Exclusive Production in CDF

Central Exclusive 2-Photon Production

Cleanest test of p+H+p theory

MGA et al. (2001) hep-ex/0511057

Khoze, Martin and Ryskin, hep-ph/0111078, Eur.Phys.J. C23: 311 (2002) KMR+Stirling hep-ph/0409037

QCD diagram identical to pHp $M(\gamma\gamma) \sim 10 - 20 \text{ GeV}$ $x_1, x_2 \text{ similar}, Q^2 \text{ lower}$ top \rightarrow u,c (mainly)

Tevatron

~ 40 events per fb⁻¹ with $p_T(\gamma) > 5 \text{ GeV/c } \& |\eta| < 1.0$

Claim factor \sim 4 uncertainty

 $\gamma\gamma \rightarrow \gamma\gamma \& q\overline{q} \rightarrow \gamma\gamma$ much smaller

Mike Albrow

Central Exclusive Production in CDF

Exclusive 2-photon Search in CDF

 $p\overline{p} \rightarrow p + \gamma\gamma + \overline{p}$

Exactly as in exclusive e+e- observation:

Cannot detect protons. Need to look for $\gamma\gamma$ + nothing. Trigger on 2 EM4 showers + forward BSC1veto. (5.4 < $|\eta|$ < 5.9) Require all calorimetry and Beam Shower Counters (-7.4 < η < +7.4) in pedestals except 2 EM showers > 5 GeV. (1.2 mrad)

Can only use events with no other collisions in bunch crossing. \rightarrow "exclusive efficiency" = 0.086

~ 2.10^6 triggers in 532 pb⁻¹ delivered, L_{eff} = 46 pb⁻¹

19 events have 2 EM showers with

 $E_T > 5$ GeV and $|\eta| < 2.0 + nothing else$

16 were the 2-photon \rightarrow e+e- events (presented earlier). 3 were not, no tracks. $\gamma\gamma$ or $\pi^0\pi^0$ Detailed study: 1 had characteristics of $\pi^0\pi^0$, 2 of $\gamma\gamma$ -- single narrow showers on each side.

2 (+1 $\pi^0\pi^0$) events were like this:

$E_{T}(\gamma) > 5 \text{ GeV}; |\eta(\gamma)| < 1.0$

10 5 0 3 2 1 0 7 -1 -2 300 300

 $\Delta \phi > 175^{\circ}; \quad \Delta p_{T} \text{ small}$ M($\gamma (\gamma = 10 - 12 \text{ GeV})$

QCD +QED process

 $gg \to \gamma\gamma$

 $\sigma(2 \text{ events}) = (90^{+120}_{-30} \pm 16) \text{ fb}$ KMR : 38/fb (x4/4) **ExHuME Monte Carlo Durham Gp, James Monk & Andy Pilkington**

Note: $\sigma_{MEAS} \approx 2 \times 10^{-12} \sigma_{INEL}$!

arXiv:0707.2374 submitted to PRL

Central Exclusive Production in CDF

Low-x August 2007

Conclusion: We have observed:

3 candidates for exclusive $(\gamma\gamma + \pi^0\pi^0 + \eta\eta)$ production May be mixture

B/G = 0.09 ± 0.04; P(\ge 3) = 1.7×10⁻⁴ = 3.7 σ

 $\sigma(\gamma\gamma) < 410 \text{ fb } (95\% \text{ c.l.})$

A, B favor $\gamma\gamma$ and C favors $\pi^0\pi^0$

If 2 of the 3 candidates are $\gamma\gamma$ events we obtain a cross section: $\sigma(2 \text{ events}) = (90^{+120}_{-30} \pm 16) \text{ fb}$

> cf Durham Group Khoze, Martin, Ryskin & Stirling hep-ph/0507040 Eur.Phys.J C38 (2005) 475 : 38 fb with factor ~ 3 uncertainty

Existence of exclusive $\gamma\gamma$ implies that exclusive H must exist (if H exists)

Agreement with Durham group suggests H cross section at LHC in reach

Central Exclusive Production in CDF

Exclusive di-jet Cross section (integral)

Value of CDF Central Exclusive Program for p+H+p at LHC

- Exclusive *YY* (if confirmed ... more data being analysed) implies that exclusive Higgs must happen (if H exists) at ~ KMR level. Cross section > 10x higher at LHC, but still difficult.
- 2) $\gamma\gamma \rightarrow e^+e^-, \mu^+\mu^-$. Luminosity calibration will be very hard, but p-calibration of p-spectrometers will work as long as have trigger in good kinematic region (high M, forward).
- 3) Photoproduction of Y,Y',Y": cross section higher than continuum and good p-calibration tool (pile-up allowed).
- 4) Can exclusive χ_b states be measured (Y+ γ) as another calibration of p+H+p cross section? Low-L, no pile-up, $\mu^+\mu^-\gamma$
- 5) Evidence for exclusive di-jets, with suggestion of depletion of exclusive b-bbar dijets as expected.

Mike Albrow

Central Exclusive Production in CDF

This field started with $\pi^+\pi^-$ at ISR, motivation glueball search. \rightarrow striking structures, narrow scalars, glueball nature still unclear. Analogue for LHC is W+W- : guaranteed from 2-photon collisions, \rightarrow hopefully striking structures, narrow scalars, Higgs or even not.

Note: pp \rightarrow p+(W+W-)+p measures M(WW) even with 1(2) neutrinos and jets (UNIQUE) as well as (WW) quantum numbers (spin) if enough statistics. For pp \rightarrow p+(ZZ)+p 2-photon continuum absent, only "H"-like states

<u>Forward Proton Spectrometers: ISR > LHC</u>

ISR (1971)

Mike Albrow

<u>Determining Quantum Numbers of Central State (H?)</u>

Is it J = 0, CP = ++?

In gg \rightarrow X only **CP** = ++ is allowed. (a CP -ve A (MSSM) is highly suppressed)

gg \rightarrow vector (J = 1) forbidden, Yang's theorem.

J = 0, 2 can be distinguished by angular distributions → partial wave analysis. Can even see states hidden in overall M distribution!

Update (Run 2) on CDF diffractive W,Z

Events with Roman Pot \overline{p} ($\xi^{RP} < 0.1$) and central W Calculate from full calorimetry ξ^{CAL} . Only "agree" if no PU Very small fraction of all events. Cannot use PU events.

 $\xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{S}} e^{-\eta}$

For no PU events, can find $\eta(v)$ by balancing ξ^{RP} and ξ^{CAL} (unique in pp)

Conclusions

Central Exclusive Production in hadron-hadron collisions is a rich field, with very clean initial and final states.

Initial: $\gamma\gamma$, γ *IP*, *IPIP* (*gg*+) Final: lepton pairs, vector mesons, scalar $Q\overline{Q}$ states, H, WW.

CDF studies of all above CE processes (except H,WW !) are an important stepping stone. First observation of $\gamma\gamma \rightarrow l^+l^-$, likely first observation of photoproduction in had-had of onium states, Candidates for exclusive $\gamma\gamma$ production, 2-jet production.

Goal of FP420/220 of studying electroweak physics (H etc) in a unique situation looks feasible.