

The CMS and TOTEM diffractive and forward physics program

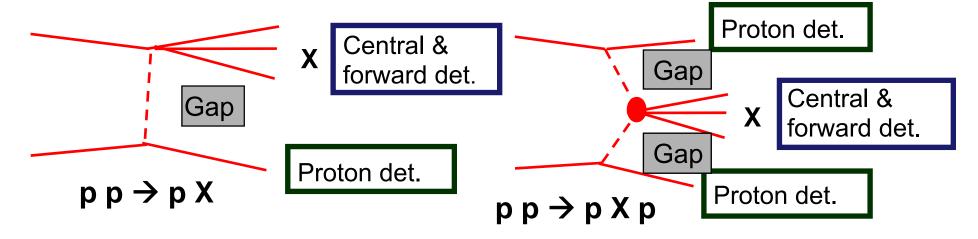
K. Österberg,

High Energy Physics Division, Department of Physical Sciences, University of Helsinki & Helsinki Institute of Physics

Low x meeting, Helsinki 29.8. - 1.9.2007

Author List

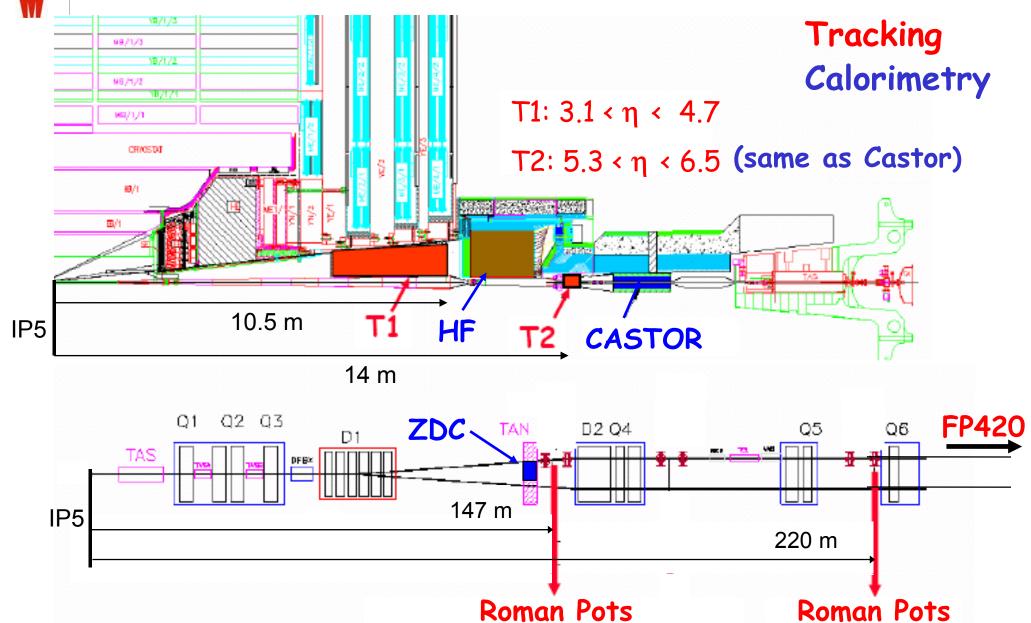
CERN/LHCC 2006–039/G–124 CMS Note–2007/002 TOTEM Note 06–5


M. Albrow^{*1}, G. Antchev^{*3}, M. Arneodo^{*2}, V. Avati^{*3}, *4, P. Bartalini^{*5}, V. Berardi^{*6}, U. Bottigli^{*24} M. Bozzo "7, E. Brücken "8, V. Burtovoy "9, A. Buzzo "7, M. Calicchio "6, F. Capurro "7, M.G. Catanesi "6, P. Catastini "24, M.A. Ciocci "24, R. Croft "10, K. Datsko", M. Deile "3, J. De Favereau De Jeneret "11, D. De Jesus Damiao"12, E. Robutti", A. De Roeck"3, D. D'Enterria"3, E.A. De Wolf"13, K. Eggert"3, R. Engel"14, S. Erhan"15, F. Ferro"7, F. Garcia Fuentes"8, W. Geist"16, M. Grothe"17, "18, "a J.P. Guillaud¹¹⁹, J. Heino¹⁸, A. Hees¹³, b, T. Hilden¹⁸, J. Kalliopuska¹⁸, J. Kaspar¹²⁰, P. Katsas¹²¹ V. Kim^{*22}, V. Klyukhin^{*3, *23}, V. Kundrat^{*20}, K. Kurvinen^{*8}, A. Kuznetsov^{*9}, S. Lami^{*24}, J. Lamsa^{*8}, G. Latino 4, R. Lauhakangas K. E. Lippmaa 5, J. Lippmaa 7, Y. Liu 11, 6, A. Loginov 3, 26, 8 M. Lokajicek"20, M. Lo Vetere"7, F. Lucas Rodriguez"3, M. Macri"7, T. Mäki"8, M. Meucci"24, S. Minutoli"7, J. Mnich"27, I. Moussienko"28, M. Murray"29, H. Niewiadomski"3, E. Noschis"8, G. Notarnicola⁴⁶, S. Ochesanu⁴¹³, K. Österberg⁸, E. Oliveri²⁴, F. Oljemark⁸, R. Orava^{8,430}, M. Oriunno"3, M. Ottela"8, S. Ovyn"11, P. Palazzi"3, A.D. Panagiotou"21, R. Paoletti"24, V. Popov 26, V. Petrov⁹, T. Pierzchala¹¹, K. Piotrzkowski¹¹, E. Radermacher³, E. Radicioni⁶, G. Rella⁶ S. Reucroft^{*28}, L. Ropelewski^{*3}, X. Rouby^{*11}, G. Ruggiero^{*3}, A. Rummel^{*25}, M. Ruspa^{*2}, R. Ryutin^{*9} H. Saarikko"8, G. Sanguinetti"24, A. Santoro"12, A. Santroni"7, E. Sarkisyan-Grinbaum"31, "e, L. Sarycheva "23, F.P. Schilling" 3, P. Schlein "15, A. Scribano Memoria "24, G. Sette", W. Snoeys "3 G.R. Snow^{*32}, A. Sobol^{*32}, ^{*f}, A. Solano^{*17}, F. Spinella^{*24}, P. Squillacioti^{*24}, J. Swain^{*28}, A. Sznajder^{*12}, M. Tasevsky "13, "g, C.C. Taylor"4, F. Torp "33, A. Trummal "25, N. Turini "24, M. Van Der Donckt "11, P. Van Mechelen "13, N. Van Remortel" A. Vilela Pereira 12, J. Whitmore 33, D. Zaborov 26

Diffraction: a window to QCD and proton structure

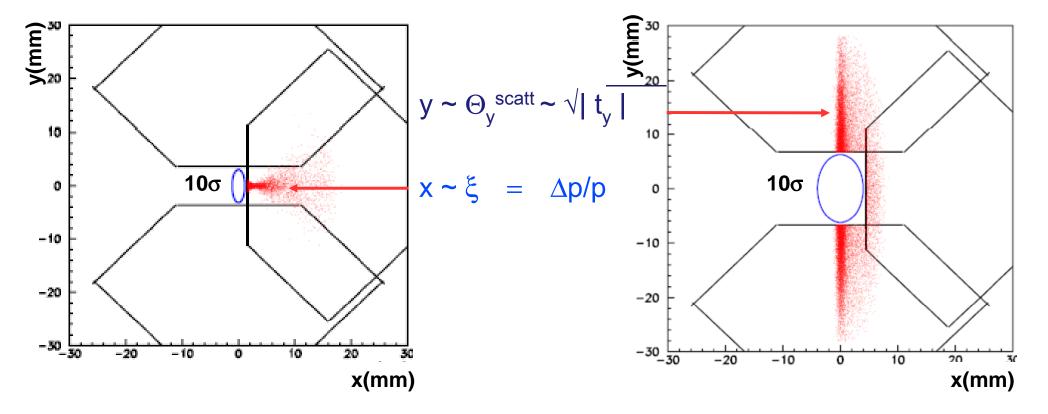
characterized by 2 gluon exchange with vacuum quantum numbers ("Pomeron")

X = anything : dominated by soft physicsMeasurement of inclusive cross sections + their t & M_X dependence fundamental measurements of non-perturbative QCD at LHC!


X = jets, W, Z, Higgs: hard processes calculable in perturbative QCD Proton structure (dPDFs & GPDs), high parton density QCD, rapidity probability, new physics in exclusive central diffraction

gap su

Experimental apparatus at IP5@LHC

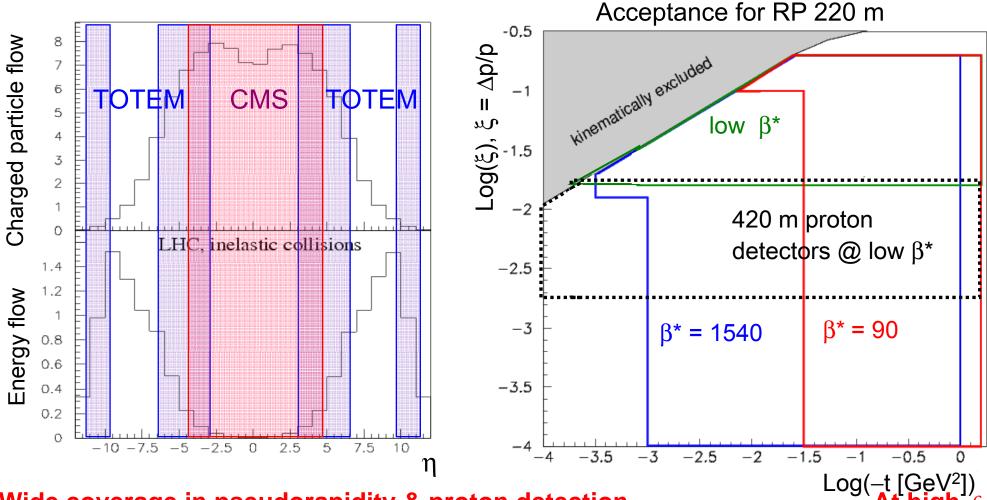


Forward proton measurement: principle

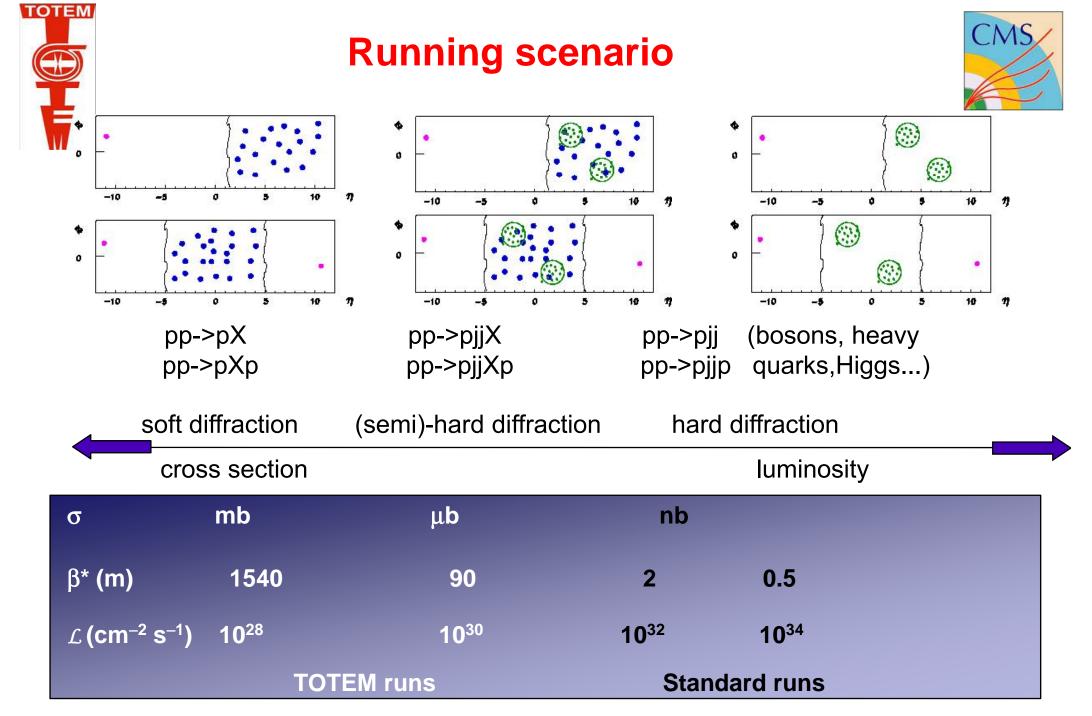
Diffractive protons : hit distribution @ RP220m high \mathcal{L} (low β^*) low \mathcal{L} (high β^*)

Detect the proton via:

its momentum loss (low β^*)


its transverse momentum (high β^*)

CMS/TOTEM combined acceptance



Unique coverage makes a wide range of physics studies possible – diffraction & proton low-x dynamics to production of SM/MSSM Higgs

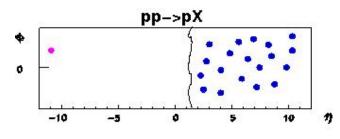
Wide coverage in pseudorapidity & proton detection proton detectors @420 m enlarge acceptance to $\xi \sim 2 \cdot 10^{-3}$ Cox talk on FP420

For details see B.

Accessible physics depends on: luminosity

8* (i.e. proton acce

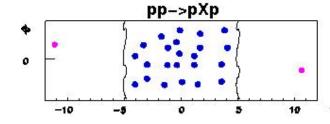
 β^* (i.e. proton acceptance)



Triggering on soft & semi-hard diffraction

Estimated Rates (Hz) [acceptance corrected]

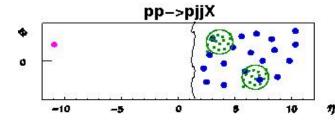
$$L = 10^{30} \text{ cm}^{-2} \text{s}^{-1}$$
 $L = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$


$$\beta^* = 90 \text{ m}$$
 $\beta^* = 2 \text{ m}$

1p T1/T2 14 mb

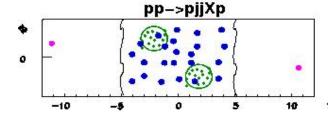
6000

 $1.4 \cdot 10^5$



2p T1/T2

1 mb


200

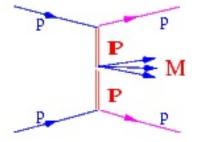
 $3.5 \cdot 10^3$

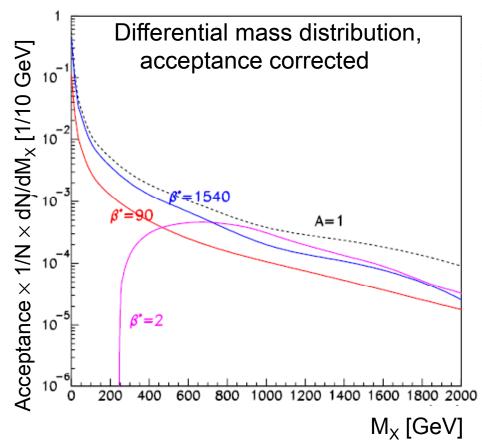
 $\begin{array}{c} & 1 \mu b \\ 1 p & (p_T^{jet} > 20 \; GeV) & 0.2 \\ T1/T2 & 30 nb \\ \text{$^{\prime\prime}$ $jet(s)(p_T^{jet} > 50 \; GeV) $ 0.01$} \end{array}$

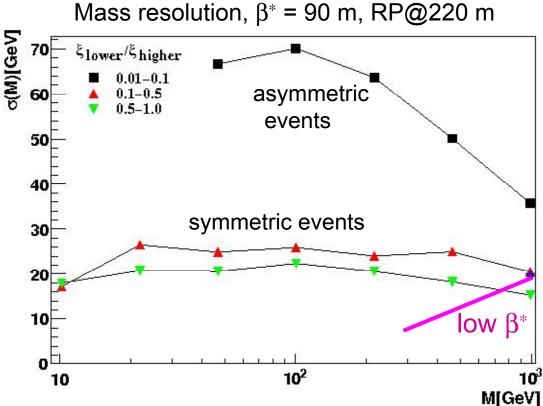
0.5

0.03

Diffraction at low luminosity: soft central diffraction

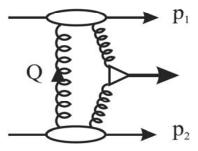



Study of mass distribution via the 2 protons

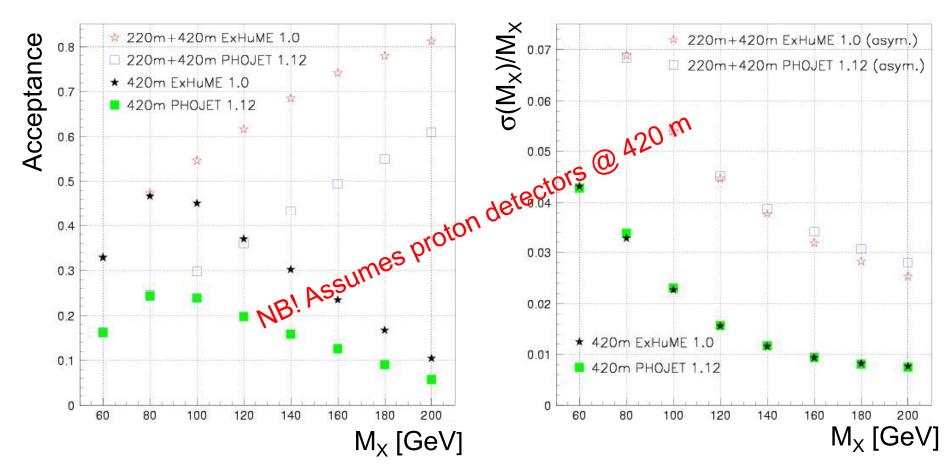

$$M_X = \sqrt{\xi_1 \xi_2} s$$

 ξ measured directly ($\sigma(\xi) \sim 1.6 \cdot 10^{-3}$ @ $\beta^* = 90$ m) or

$$\begin{array}{ll} - \text{ with rapidity gap} & \Delta \eta = - \text{ln} \xi & \sigma(\xi)/\xi \sim 80 \ \% \\ - \text{ with calorimeters} & \xi = \Sigma_{\rm i} \ E^{\rm T}_{\rm i} \ e^{\pm \eta_{\rm i}} \ / \ \sqrt{s} & \sigma(\xi)/\xi \sim 100 \ \% \end{array}$$



Diffraction at high luminosity: central exclusive production



New physics searches e.g. σ (pp \rightarrow p H(120 GeV)[\rightarrow bb] p) ~ 3 fb (KMR)

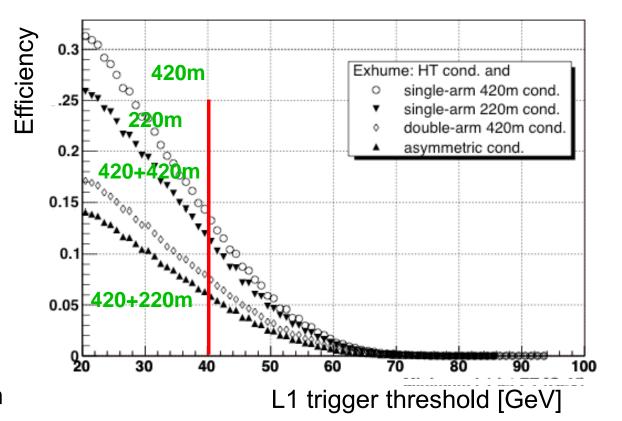
J^{PC} selection (0⁺⁺...) → qq background heavily suppressed Selection: 2 protons + 2 b-jets with consistent mass values Experimental issues: trigger efficiency & pileup background

 σ in some MSSM scenarios much larger, H \rightarrow WW if H heavier

Diffraction at high luminosity: triggering on diffraction

dedicated diffractive trigger stream foreseen at L1 & HLT (1 kHz & 1 Hz)

standard trigger thresholds too high for diffraction at nominal optics \rightarrow use information from fwd detectors to lower particular trigger thresholds


L1:

- jet $E_T > 40$ GeV (\leftrightarrow standard 2-jet threshold: ~100 GeV @ $\mathcal{L} = 2 \cdot 10^{33}$ cm⁻²s⁻¹)
- . 1 (or 2) arm RP@220 m
- diffractive topology (fwd rap gaps, jet-proton hemisphere correlation ...)

HLT (more process dependent):

e.g. 420 m proton detectors, mass constraint, b-tagging..

bench mark process: central exclusive H(120 GeV) \rightarrow bb L1: ~ 12 % HLT: ~ 7 % additional ~ 10 % efficiency @ L1 with a 1 jet + 1 μ (40 GeV, 3 GeV) trigger

Diffraction at high luminosity: reducing pileup background

At high luminosity, non-diffractive events overlaid by soft diffractive events mimic hard diffractive events ("pileup background")

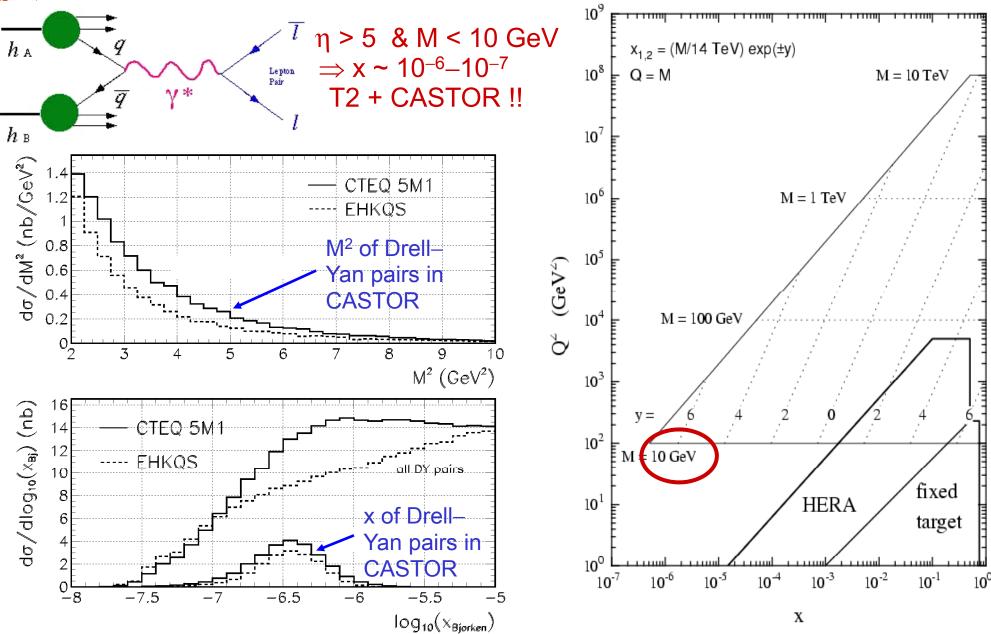
Pileup event probability with single proton in RP@220m (420m) ~ 6 % (2 %) → probability for fake central diffractive signal caused by pileup protons

lumi	$ \langle N^{PU} \rangle $	420+420	220+220	220+420	Total
$1 \cdot 10^{33}$	3.5	0.003	0.019	0.014	0.032
$2 \cdot 10^{33}$	7.0	0.008	0.052	0.037	0.084
$5 \cdot 10^{33}$	17.5	0.033	0.205	0.153	0.300
$7 \cdot 10^{33}$	25.0	0.063	0.280	0.246	0.417
$1 \cdot 10^{34}$	35.0	0.101	0.480	0.380	0.620

Pileup background reduction:

- ${\boldsymbol \cdot}$ correlation ξ & mass measured with central detector & proton detectors
- fast timing detectors to distinguish proton origin & hard scattering vertex from each other (R&D project)

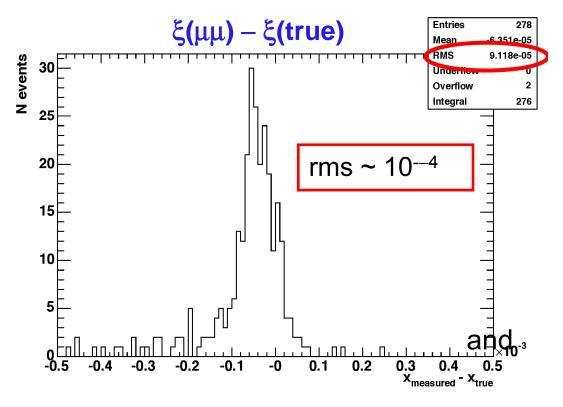
pileup background depends on LHC diffractive proton spectrum


→ rapidity gap survival probability

Low-x physics

high √s @ LHC allows access to quark & gluon densities for small Bjorken–x values: fwd Drell-Yan (jets) sensitive to quarks (gluons)

Forward physics



- Forward particle & energy flow: validation of hadronic air shower models, possible new phenomena...
- Study of underlying event
- $-\gamma\gamma$ & γ p mediated processes: e.g. exclusive dilepton production

QED process (a) production σ precisely known

■ Hadronic corrections [(b) (c)] small.

Calibration process for luminosity energy scale of proton detectors

Allows proton ξ value reconstruction with a 10⁻⁴ resolution < beam energy spread Striking signature: acoplanarity angle between leptons

CMS 2008 diffractive & forward program

First analysis in 2008 most likely based on large rapidity gap selection RP@220 m available need time to understand the data ...

Even if

Concentrate first analysis on data samples where pileup negligible

Developing rapidity gap trigger with forward calorimeters (HF, CASTOR...)

Program:

"Rediscover" hard diffraction a la Tevatron, for example:

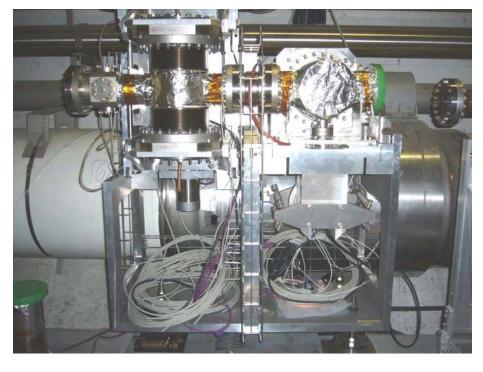
- measure fraction of W, Z, dijet and heavy flavour production with large rapidity gap
- observe jet-gap-jet and multi-gap topologies

Forward physics with CASTOR

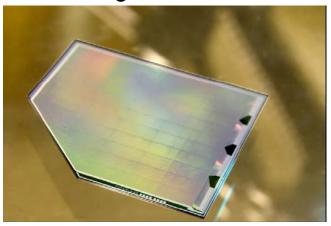
measure forward energy flow, multiplicity, jets & Drell-Yan electrons

$\gamma\gamma$ & γ p interactions, for example

observe exclusive di-lepton production



TOTEM Detectors: Roman Pots



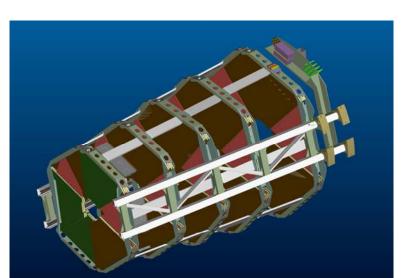
2 RP220 m stations installed into LHC in May-June, remaining by end of summer



Si edgeless detector

First edgeless Si detectors mounted with final VFAT hybrid successfully working with source & in test beam → all detector assemblies ready for mounting by April 2008.

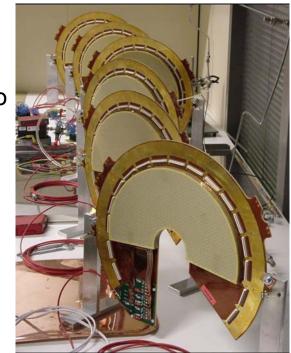
VFAT hybrid with detector



TOTEM detectors: T1 & T2

T1 Telescope

T2 Telescope



testbeam setup

Mechanical frames and CSC detectors in production; tests in progress. During 2007 complete CSC production. Plan to have two half-telescopes ready for mounting in April 2008.

All necessary
GEM's produced
(> half tested upto
gains of 80000).
Energy resolution
20-30 %. The 4
half-telescopes
should be ready
for mounting in
April 2008.

Optics & beam parameters

Parameters	$\beta^* = 2 \text{ m}$	$\beta^* = 90 \text{ m}$	$\beta^* = 1540 \text{ m}$	
	(standard step in LHC start-up)	(early TOTEM optics)	(final TOTEM optics)	
Crossing angle	0.0	0.0	0.0	
N of bunches	156	156	43	
N of part./bunch	$(4-9)\cdot 10^{10}$	(4 - 9) · 10 ¹⁰	3 · 10 ¹⁰	
Emittance [μm · rad]	3.75	3.75	1	
10 · vertical beam width at RP220 [mm]	~ 3	6.25	1.3	
Luminosity [cm ⁻² s ⁻¹]	$(2-11)\cdot 10^{31}$	(5 - 25) · 10 ²⁹	1.6 · 10 ²⁸	

β^* = 90 m ideal for early running:

- fits well into the LHC start-up running scenario;
- uses standard injection → easier to commission than 1540 m optics
- wide beam → ideal for RP operation training (less sensitive to alignment)

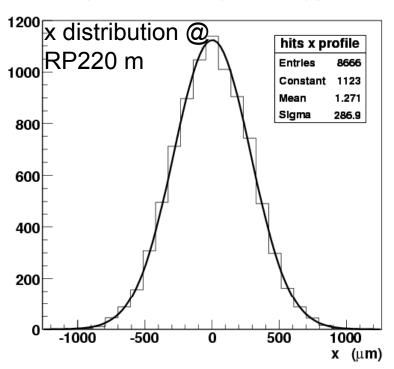
 β^* = 90 m optics proposal submitted to LHCC & well received.

$\beta^* = 90 \text{ m optics}$

(x*,y*):vertex position

 $(\theta_{x}^{*}, \theta_{v}^{*})$:emission angle

Optics optimized for elastic & diffractive scattering


Proton coordinates w.r.t. beam in the RP at 220 m:

$$y = L_y \theta_y^* + y_y y^*$$

 $L_y = 265 \text{ m (large)} \quad v_y = 0$ vertical parallel-to-point focusing

 \rightarrow optimum sensitivity to θ_y^*

i.e. to t (azimuthal symmetry)

$$x = L_x \theta_x^* + v_x x^* + D\xi$$

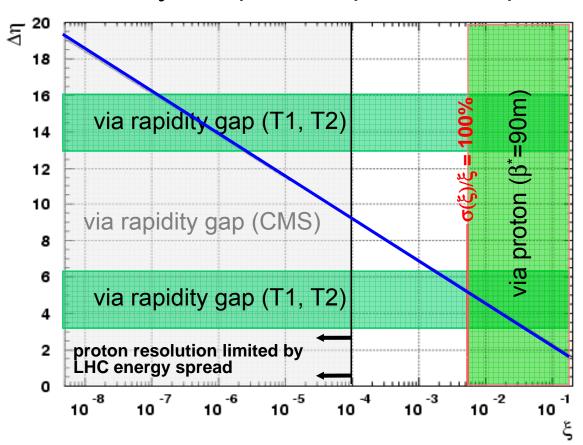
$$L_x = 0$$
 $v_x = -2$ $D = 23$ mm $\xi = \Delta p/p$ elimination of θ_x^* dependence

- → enhanced sensitivity to x in diffractive events,
- → horizontal vertex measurement in elastic events

x distribution @ RP220 m for elastic events → measurement of horizontal vertex distribution @ IP

Luminosity estimate together with beam parameters if horizontal-vertical beam symmetry assumed

Beam position measurement to ~1 μm every minute



TOTEM 2008 physics program

For early runs: optics with $\beta^* = 90$ m requested from LHCC

- Optics commissioning fits well into LHC startup planning
- Typical running time: several periods of a few days
- Total pp cross section within ± 5%
- Luminosity within ± 7%
- Soft diffraction with ξ -independent proton acceptance (~ 65%)

Summary

CMS and TOTEM diffractive and forward physics program

CMS+TOTEM provides unique pseudo-rapidity coverage Integral part of normal data taking both at nominal & special optics

Low Luminosity (< 10³² cm⁻²s⁻¹): nominal & special optics

- Single & central diffractive cross sections with jets, rapidity gap studies)
- Low-x physics
- Forward Drell-Yan & forward inclusive jets
- Validation of Hadronic Air Shower Models

Increasing Luminosity (> 10³² cm⁻²s⁻¹): nominal optics

- Single & central diffraction with hard scale
 W, Z, heavy quarks) ⇒ dPDF's,
 GPD's, rapidity gap survival probability
- γγ & γρ physics

Running wative & TEM optics: large proton acceptance

No pileup

Pileup not disettgible: important background source

Need additional proton detectors

High Luminosity (> 10³³ cm⁻²s⁻¹): nominal optics

Characterise Higgs/new physics in central diffraction?

Content of common physics document

Includes important experimental issues in measuring forward and diffractive physics but not an exhaustive physics study

- Detailed studies of acceptance & resolution of forward proton detectors
- Trigger
- Background
- Reconstruction of kinematical variables

Several processes studied in detail

Ch 1: Introduction

Ch 2: Experimental Set-up

Ch 3: Measurement of Forward Protons

Ch 4: Machine induced background

Ch 5: Diffraction at low and medium luminosity

Ch 6: Triggering on Diffractive Processes at High Luminosity

Ch 7: Hard diffraction at High Luminosity

Ch 8: Photon-photon and photon-proton physics

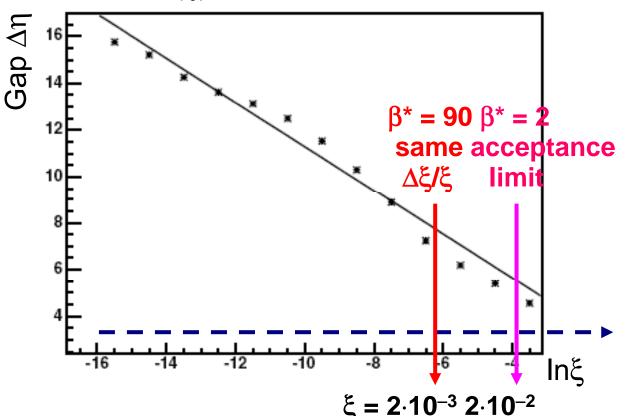
Ch 9: Low-x QCD physics

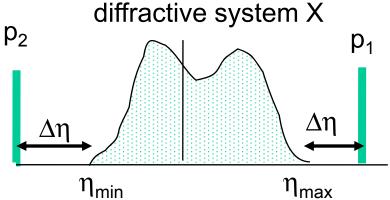
Ch 10: Validation of Hadronic Shower Models used in cosmic ray physics

An important milestone for collaboration between the 2 experiments

Running scenarios

Physics:	low t elastic, σ _{tot} , min bias	large t elastic	Soft diffraction	Soft & semi-hard diffraction
β*[m]	1540 (90)	18, 2, 0.5	1540	90
N of bunches	43	2808	156	156
N of part. per bunch (x 10 ¹¹)	0.3	1.15	(0.6 - 1.15)	1.15
Half crossing angle [µrad]	0	160	0	0
Transv. norm. emitt. [μm rad]	1 (3.75)	3.75	1 - 3.75	3.75
RMS beam size at IP [μm]	454 (200)	95	454 - 880	200
RMS beam diverg. [μrad]	0.29 (2.3)	5.28	0.29 - 0.57	2.3
Peak luminosity [cm ⁻² s ⁻¹]	1.6 (7.3) x 10 ²⁸	3.6 x 10 ³²	2.4 x 10 ²⁹	2 x 10 ³⁰

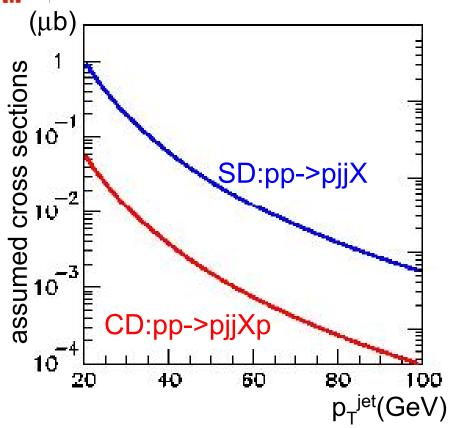

Diffraction at low luminosity: rapidity gaps



Measure ξ via rapidity gap: $\Delta \eta = -\ln \xi$

Achieved resolution: $\sigma(\xi)/\xi \sim 80 \%$

Gap vs In (ξ) T1+T2+Calorimeters



Gap measurement limit due to acceptance of T2

Diffraction at medium luminosity: semi-hard diffraction

Measure cross sections & their t, M_X , p_T^{jet} dependence

Event topology: exclusive vs inclusive jet production

→ access to dPDF's and rapidity gap survival probability

N event collected [acceptance included]

$$\beta^* = 90 \text{ m} \int \mathcal{L} dt = 0.3 \text{ pb}^{-1}$$

SD: $p_T > 20 \text{ GeV}$ $6x10^4$

CD: " 2000

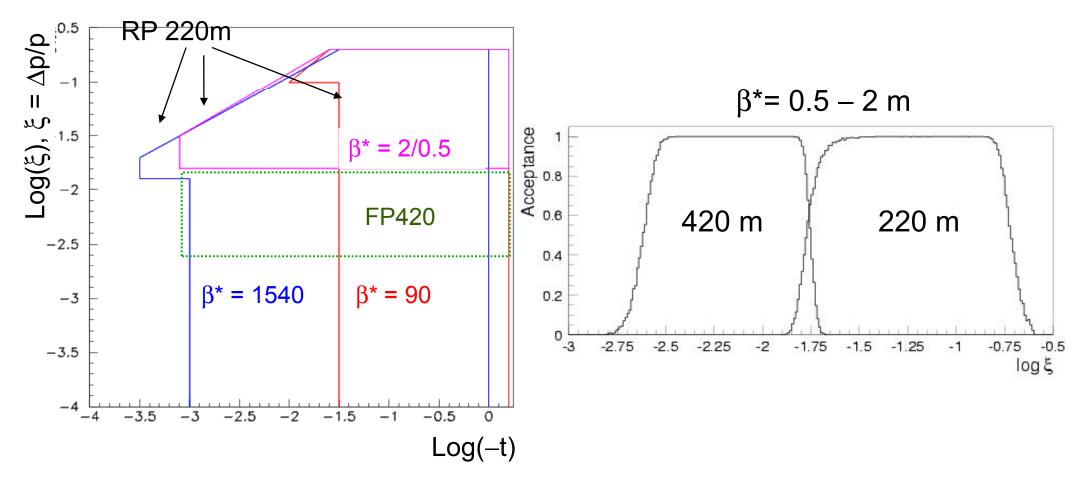
$$\beta^* = 2 \text{ m} \quad \int \mathcal{L} \, dt = 100 \text{ pb}^{-1}$$

SD: $p_T > 50 \text{ GeV}$ $5x10^5$

CD: " $3x10^4$

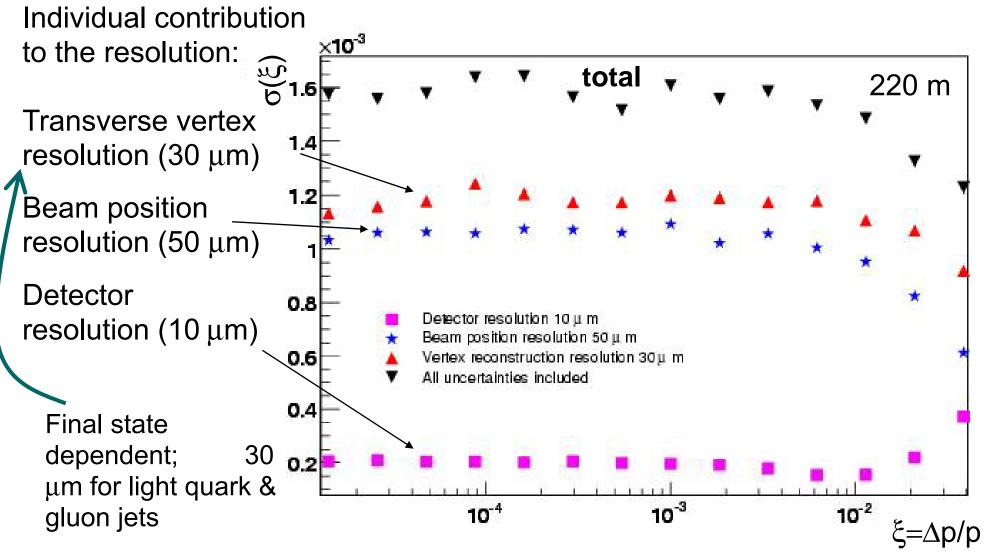
from calorimeter info:

$$\xi^{\pm} = \Sigma_i E_T^i e^{\pm \eta_i} / \sqrt{s}$$


$$\sigma(\xi)/\xi \sim 40 \%$$

In case of jet activity ξ also determined

Forward proton measurement: acceptance (@220 m & 420 m)



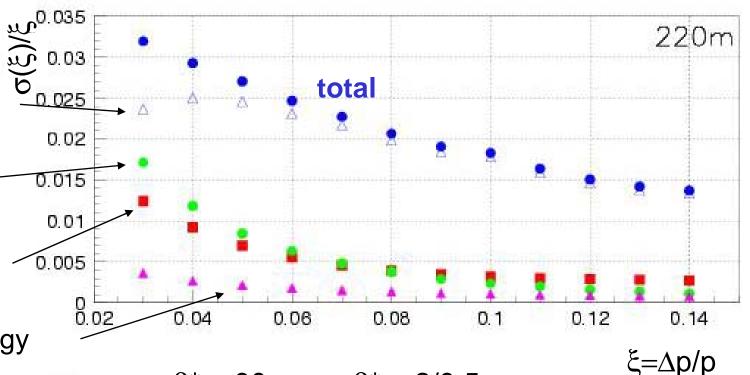
Proton detectors at 420 m would enlarge acceptance range down to ξ = 0.002 at high luminosity (= low β *).

Forward proton measurement: momentum resolution (β * = 90 m)

Forward proton measurement: momentum resolution (β * = 2/0.5 m)

Individual contribution

to the resolution:


Detector resolution (10 μm)

Beam position resolution (50 μm)

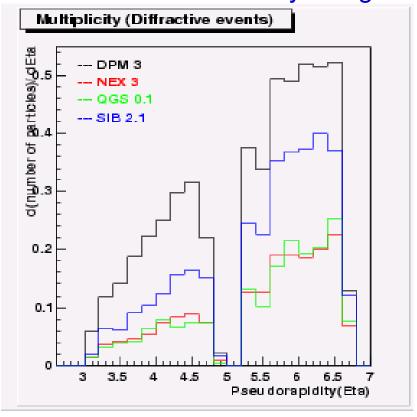
Transverse vertex resolution (10 μm)

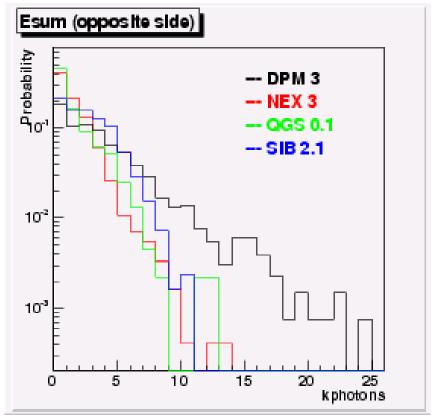
Relative beam energy spread (1.1·10⁻⁴)

Very little final state dependence since transverse IP size is small.

$$\beta^* = 90 \text{ m vs. } \beta^* = 2/0.5 \text{ m}$$

Better $\sigma(\xi)/\xi$ for $\beta^* = 2/0.5$ m & larger luminosity but limited ξ acceptance $(\xi > 0.02)$

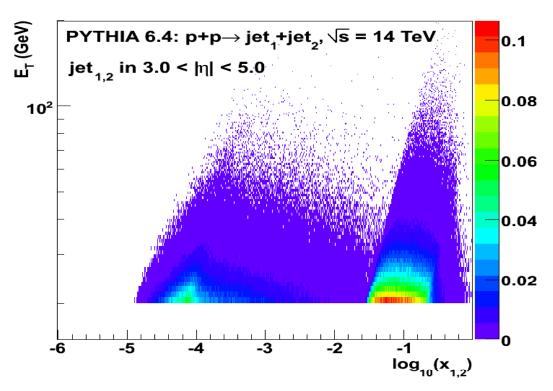

Cosmic ray connection

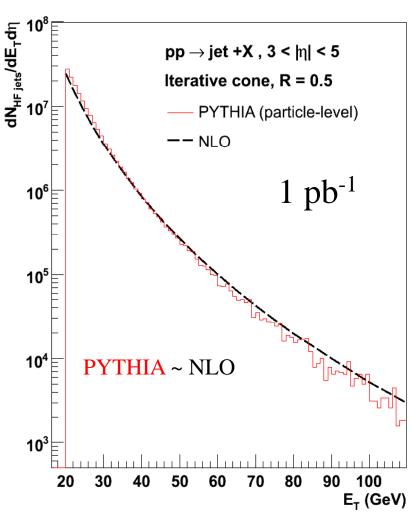


Interpreting cosmic ray data depends on cosmic shower simulation programs Forward hadronic scattering poorly known/constrained Models differ up to a factor 2 or more

Need forward particle/energy measurements at high center-of-mass energy (LHC \leftrightarrow E_{lab}=10¹⁷ eV)

Achievable at low luminosity using T1/T2/HF/Castor

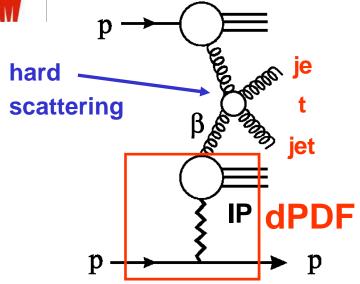

Low-x physics: forward jets



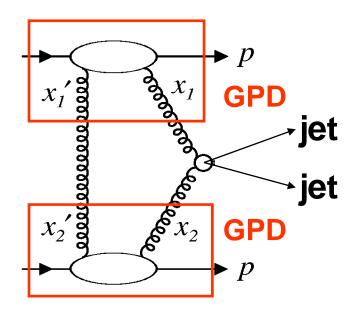
Inclusive forward "low- E_T " jet ($E_T \sim 20-100 \text{ GeV}$) production:

$$p + p \rightarrow jet1 + jet2 + X$$

Sensitive to gluons with: $x_2 \sim 10^{-4}$, $x_1 \sim 10^{-1}$



Large expected yields (~10⁷ at ~20 GeV)!


Diffractive PDF's and GPD's

Diffractive PDFs:

probability to find a parton of given x under condition that proton stays intact — sensitive to low-x partons in proton, complementary to standard PDFs

Generalised Parton Distributions (GPD)

quantify correlations between parton momenta in the proton t-dependence sensitive to parton distribution in transverse plane

When x'=x, GPDs are proportional to the *square* of the usual PDFs