Xavier Janssen - Université Libre de Bruxelles

On behalf of H1 and ZEUS Collaborations

Inclusive diffraction at HERA and factorisation issues

LOW X MEETING

Helsinki, Finland, 29th Sept., 2007

Inclusive diffraction at HERA

Proton stays intact and loses small momentum fraction

- Q^2 Photon virtuality
- x Bjorken-x

3

t

- $\mathcal{X}_{I\!\!P}$ Momemtum fraction of colour singlet exchange
 - Fraction of exchange momemtum of struck q
 - 4-momemtum transfer squared
- $W\,$ Photon-proton cms energy

 $x = x_{I\!\!P} \beta$; $W = Q^2 \left(\frac{1}{x} - 1\right)$

Main observable: Reduced cross section σ_r^D

$$\frac{\mathrm{d}^4 \sigma^{ep \to eXp}}{\mathrm{d}x \mathrm{d}Q^2 \mathrm{d}x_{I\!P} \mathrm{d}t} = \frac{4\pi\alpha^2}{xQ^4} Y_+ \sigma_r^{D(4)}(x, Q^2, x_{I\!P}, t)$$

$$\sigma_r^{D(4)}(x, Q^2, x_{I\!P}, t) = F_2^{D(4)} - \frac{y^2}{Y_+} F_L^{D(4)} \approx F_2^{D(4)}$$

H1: Large Rapidity Gap Method

ZEUS: M_X Method

- Gap spanning $3.3 < \eta < 7.5$
- Measure kinematic from hadrons in central detector
- Some proton dissociation \rightarrow Correct to $M_Y < 1.6 \text{ GeV}$

• Flat vs ln M_X^2 for diffractive events

- non-diffracive events substracted from fit
- Proton dissociation $ep \rightarrow eXY$ corrected to $M_Y < 2.3 \text{ GeV}$

H1: Large Rapidity Gap Method

- \bullet Gap spanning $3.3 < \eta < 7.5$
- Measure kinematic from hadrons in central detector
- Some proton dissociation \rightarrow Correct to $M_Y < 1.6 \text{ GeV}$

- $\eta_{max} < 3.0$
- $E_{FPC} < 1 \text{ GeV}$ (FPC covers $4 < \eta < 5$)
- Some proton dissociation
 - \rightarrow Correct to $M_Y < 2.3$ GeV

• M_X Method possible in H1

BUT lower acceptance in fwd direction \rightarrow larger sytematic error on substraction for H1 \rightarrow Restricted W range

ZEUS: M_X Method

- Flat vs ln M_X^2 for diffractive events
- non-diffracive events substracted from fit
- Proton dissociation $ep \rightarrow eXY$ corrected to $M_Y < 2.3 \text{ GeV}$

Factorisation Properties

 QCD hard scattering collinear factorisation (Collins) at fixed x_{IP} and t

 \rightarrow DGLAP applicable for Q^2 evolution.

$$d\sigma_{i}(ep \to eXp) =$$

$$f_{i}^{D}(x, Q^{2}, x_{I\!\!P}, t) \otimes d\hat{\sigma}^{i}(x, Q^{2})$$

 Proton vertex" factorisation of x, Q² from x_{IP}, t (and M_Y) dependences

No firm basis in QCD !

H1 Published Data Overview

New ZEUS Data with Rapidity Gap Method

New ZEUS Data with Proton Tag

2000e+ data 32.6 pb⁻¹ $x_{I\!\!P} < 0.1$ $2 < Q^2 < 120 \ {\rm GeV}^2$

- Regge fit

 $\begin{aligned} \alpha_{I\!P}(0) &= 1.1 \pm 0.02(\text{stat})^{+0.01}_{-0.02}(\text{syst}) \\ &\pm 0.02(\text{mod}) \end{aligned}$ $\alpha'_{I\!P} &= -0.03 \pm 0.07(\text{stat})^{+0.04}_{-0.08}(\text{syst}) \text{ GeV}^{-2} \\ B_{I\!P} &= 7.2 \pm 0.7(\text{stat})^{+1.4}_{-0.7}(\text{syst}) \text{ GeV}^{-2} \\ \alpha_{I\!R}(0) &= 0.75 \pm 0.07(\text{stat})^{+0.02}_{-0.04}(\text{syst}) \\ &\pm 0.05(\text{mod}) \end{aligned}$

 $\chi^2/ndf = 172.5/153 = 1.13$

ZEUS LPS 00 (Prel.) t = 0.13 GeV²
ZEUS LPS 00 (Prel.) t = 0.3 GeV²

ZEUS: Rapidity Gap vs Leading Proton data

ZEUS LPS 00 (Prel.) / ZEUS LRG 00 (Prel.)

Comparaison between data sets

- H1 LRG/H1 FPS = $1.23 \pm 0.03 \pm 0.16$ with shape agreement $\rightarrow 19 \pm 11\%$ of p-diss in H1 LRG data New M_X data from H1: Prelim. 99-00, 34 pb⁻¹
- H1 FPS and ZEUS LPS data agrees within 8% normalisation
- Good agreement between
 H1 and ZEUS M_X data
 but H1 W range limited !
- Relative agreement between LRG and M_X / H1 and ZEUS data
- \rightarrow Coherent data sets respecting shapes
- \rightarrow Common H1/ZEUS investigation on p-dissociation normalisation

t dependence from FPS and LPS data

• $B(x_{I\!\!P})$ data constrain $I\!\!P$, $I\!\!R$ flux in proton vertex factorisation model

- Regge motivated form: $f_{I\!\!P/p}(x_{I\!\!P},t) = \frac{e^{B_{I\!\!P}t}}{x_m^{2\alpha_{I\!\!P}(t)-1}}; \alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha'_{I\!\!P}t$
- Fitting H1 data to $B = B_{x_{I\!\!P}} + 2\alpha'_{I\!\!P} \ln(1/x_{I\!\!P})$ gives:

 $B_{x_{I\!\!P}} = 5.5^{-2.0}_{+0.7} \text{GeV}^{-2} \qquad \alpha'_{I\!\!P} = 0.06^{+0.19}_{-0.06} \text{GeV}^{-2}$

H1 2006 DPDF fit results

• Fit A:
$$Q_0^2 = 1.45 \; {\rm GeV^2} \ \chi^2 \sim 158/183 \; {\rm dof}$$

- Singlet constrained to $\sim 5\%$
- Gluon to $\sim 15\%$ at low z
- Gluon error band blowing up at highest *z*

• Fit B:
$$zg(z, Q_0^2) = A_g$$

 $\chi^2 \sim 164/184 \text{ dof}$

- Singlet very stable
- Gluon similar at low \boldsymbol{z}
- Gluon change at high \boldsymbol{z}

 \longrightarrow New Diffractive PDFs available \longrightarrow Lack of sensitivity to gluon at high z

H1 2006 DPDF fit results

 \longrightarrow New Diffractive PDFs available \longrightarrow Lack of sensitivity to gluon at high z

H1 Fit: High z sensitivity to gluon

• As there are only singlet quarks, the evolution eq. for F_2^D is

- At low β , evolution driven by $g \rightarrow q\bar{q}$
 - \longrightarrow strong sensitivity to gluon
- At high β, relative error on derivative grows, q → qg contribution becomes important → sensitivity to gluon is lost

Effective Pomeron Trajectory Intercept

- H1 Pomeron Intercept from QCD fits:
- $\alpha_{I\!\!P}(0) = 1.118 \pm 0.008 (\text{exp.})^{+0.029}_{-0.10} (\text{th.})$
- Dominant uncertainty from strong correlation with $\alpha_{I\!\!P}^{'}$
- No variation in Q^2 or β \rightarrow support p vertex factorisation

ZEUS $I\!\!P$ Intercept from Regge fits:

- Data from ${\it M}_{\it X}$ and LRG methods
- No variation with Q^2 within errors

Consistent with proton tag results:

H1: $\alpha_{I\!P}(0) = 1.114 \pm 0.018 (\text{stat.}) \pm 0.012 (\text{syst.})^{+0.040}_{-0.020} (\text{th.})$ ZEUS: $\alpha_{I\!P}(0) = 1.1 \pm 0.02 (\text{stat.})^{+0.01}_{-0.02} (\text{syst.}) \pm 0.02 (\text{th.})$

Xavier Janssen – p.13

Factorisation breaking at the Tevatron

CDF measurement of the diffractive dijet production (using ratio SD/ND):

• The prediction based on diffractive PDF's extracted at HERA are one order of magnitude above the measures cross section!

• same to factorisation breaking in soft diffraction (Tevatron RUN I).

• also seen in W&Z production (sensitive to quark) and J/Ψ and b-mesons (sensitive to gluons)

• Factorization not expected to hold in *pp*. Violation of factorization understood usually in terms of (soft) rescattering corrections of the spectator partons

But other approaches exist...

H1 Diffractive Dijets in DIS

• Sensitivity to gluon at high z

 \rightarrow Combined QCD fit to dijets and inclusive data to constrain gluon at high z

H1 Diffractive Dijets in DIS

- Sensitivity to gluon at high z
 - \rightarrow Combined QCD fit to dijets and inclusive data to constrain gluon at high z

• Fit successfull:
$$\chi^2 = 196/217$$

Common $F_2^{D(3)}$ and DIS Jets Diff. PDFs \rightarrow Factorisation holds

H1: Dijets in DIS and Photoproduction

 x_{γ} = fraction of photon momentum in hard scattering

Resolved γ can behave as a hadron → Factorization braking expected for resolved case ($x_{\gamma} < 1$)

- Factorisation holds in DIS
- Factorisation breaking in Photoprod. both for direct and resolved \rightarrow Global factor: ~ 0.5

ZEUS: Dijets in DIS

ZEUS: Dijets in Photoproduction

99-00 Data: $E_{T,jet1(2)} > 7.5(6.5) \text{ GeV}$ $< Q^2 >= .02 \text{ GeV}^2$ 142 < W < 293 GeV

Higher E_T cuts vs H1

NLO Predictions:

- Klasen-Kramer code
- Diffractive PDFs:
 - NLO Fits to ZEUS FPS + charm
 - H1 NLO Fit 2006 A
 - H1 NLO Fit 2006 B
- Data/NLO(FPS Fit) ~ 0.7
- Data/NLO(H1 Fit B) \sim 0.8-0.9

→ Factorisation breaking not seen in ZEUS Photoproduction Dijet within large theoretical errors

Ongoing investigation on possible sources of difference vs H1 (E_T cut, theory treatments,...)

D* in Diffractive DIS

D^{*} in Diffractive Photoproduction

QCD Analysis of H1 Data

- Fit H1 LRG data in fixed $x_{I\!P}$ binning using NLO DGLAP evolution of DPDFs (massive scheme) to describe x, Q^2 dependences
- Proton vertex factorisation framework assumed
- Fit all H1 LRG data with $Q^2 \ge 8.5 \text{ GeV}^2$, $M_X > 2 \text{ GeV}$, $\beta \le 0.8$ — Ensure stability of fit with variations of kinematic boundaries
- Parametrize: quark singlet: $z\Sigma(z,Q_0^2) = A_q \ z^{B_q} \ (1-z)^{C_q}$
 - gluon density: $zg(z, Q_0^2) = A_g (1 z)^{C_g}$ gluon insensitive to B_g
 - $\alpha_{I\!\!P}(0)$ (describes $x_{I\!\!P}$ dependence)
- Fix: use world average for $\alpha_s(M_Z) = 0.118$
 - sub-leading $I\!R$ flux parameters taken from previous data
 - sub-leading $I\!\!R$ PDFs from Owens- π but free normalization
- Small number of parameters in DPDFs \longrightarrow Need to optimize Q_0^2 wrt χ^2

<u>SUMMARY</u>

Inclusive Diffraction:

- Studied within the QCD framework by H1 and ZEUS with several methods (LRG, M_X and Proton Tag)
- Global agreement but some open points (p-diss, M_X vs LRG)
- Proton vertex factorisation provides a good approximation for the $x_{I\!\!P}$ dependence $\leftrightarrow \alpha_{I\!\!P}(0)$ constant vs Q^2
- New Diffractive PDFs extracted from NLO QCD fits to H1 data
- Final states and factorisation tests:
 - Diffractive charm and dijets in DIS consistent with NLO predictions based on Diffractive PDFs ↔ support factorisation
 - Diffractive dijets in DIS constraint further Diffractive PDFs
 - H1 data on dijets in PhP indicates factorisation breaking for both direct and resolved components by a factor 0.5
 - However, ZEUS data on dijets in PhP do not confirms this factorisation breaking (but large theory uncertainties)

New H1 Data with Rapidity Gap Method

H1 data 97 H1 data 99-00 (prelim.) • H1 published data H1 data 2004 (prelim.) β**=0.04** β**=0.65** β=0.01 β=0.1 β**=0.2** β=0.4 $Q^2 [GeV^2]$ ر 0.05 م ال D(3) ≣≟ †++,+ • H1 Prelim. 99-00, 34 pb⁻¹ 12 ***†**+ **** 4₉+,,+ ***** $10 < Q^2 < 105 \,\,\mathrm{GeV^2}$ 0.05 **₽**, 15 **±**•• ***. 2***** 1.000 ... 1000 · • H1 Prelim. 2004, 34 pb⁻¹ 0.05 . ₽ ₽ ₽ 20 **....** 1..... $17.5 < Q^2 < 105 \text{ GeV}^2$ 0.05 25 -±.... Ī.A... Large increase in statistics 0.05 35 *******+ I. 0.05 ¦ ੈੈੈੈੈ [‡]q_{y≜}+ 45 **↓**...+ ********** Consistent with publised data 0.05 60 H1 Collaboration ŧł. **t** ∤≎≴∔⊥+ 0.05 90 <u>∣</u>ŧ¦† **↓**↓ ,<mark>₽</mark> 10⁻³ 10⁻³ 10⁻³ 10⁻³ 10⁻³ 10⁻³ XIP