Inclusive F₂ at low x and F_L measurement at HERA

Joël Feltesse Desy/Hamburg/Saclay

On behalf of the H1 and ZEUS Collaborations

Outlook

- Reminder on published results
- New preliminary H1/ZEUS combination
- New preliminary data
- F_L status and expectations from last data

Inclusive cross section

$$\frac{d\sigma}{dxdQ^2} \propto F_2(x,Q^2)$$

$$F_{2}(x,Q^{2}) = \sum_{quarks} e^{2}x \left[q(x,Q^{2}) + \bar{q}(x,Q^{2}) \right]$$

Impressive rise of F_2 as $x \rightarrow 0$

Impressive rise of sea quarks density

The rise increases with Q².

Excellent description of data by DGLAP evolution equations. No BFLKL terms required !

No slow down of F₂ rise No saturation observed yet

Well known pattern of scaling violations :

positive at x<0.08negative at x>0.13

At Leading Order (DGLAP) :

$$\frac{\partial F_2}{\partial \ln Q^2} \propto \alpha_s [P \otimes g + P \otimes F_2]$$

5

Well ! But there is still room for improvement !

Combination of H1 and ZEUS DIS Cross Section Measurements

• It should be the ultimate legacy from HERA.

- After a first simple combination of high Q² data in 2006, dominated by statistical errors, a coherent approach taking into account systematic correlations and providing cross calibration has been developed.
- To day : preliminary results on HERA I published data taken between 1996-2000 at Q² > 1.5 GeV²

Input Data Sets

data set		x range		Q^2 range		\mathcal{L}	ref.	comment	
				(GeV^2)		pb^{-1}			
H1 NC min. bias	97	0.00008	0.02	3.5	12	1.8	[5]	NC $e^+p\sqrt{s} = 301 \text{ GeV}$	
H1 NC low Q^2	96 - 97	0.000161	0.20	12	150	17.9	[5]	NC $e^+p\sqrt{s} = 301 \text{ GeV}$	
H1 NC	94 - 97	0.0032	0.65	150	30000	35.6	[6]	NC $e^+p\sqrt{s} = 301 \text{ GeV}$	
H1 CC	94 - 97	0.013	0.40	300	15000	35.6	[6]	$CC \ e^+ p \sqrt{s} = 301 \ GeV$	
H1 NC	98 - 99	0.0032	0.65	150	30000	16.4	[7]	NC $e^- p \sqrt{s} = 319$ GeV	
H1 CC	98 - 99	0.013	0.40	300	15000	16.4	[7]	$CC e^- p \sqrt{s} = 319 \text{ GeV}$	
H1 NC	99 - 00	0.00131	0.65	100	30000	65.2	[8]	NC $e^- p \sqrt{s} = 319$ GeV	
H1 CC	99 - 00	0.013	0.40	300	15000	65.2	[8]	$CC e^- p \sqrt{s} = 319 \text{ GeV}$	
ZEUS NC	96 - 97	0.00006	0.65	2.7	30 000	30.0	[12]	NC $e^+ p \sqrt{s} = 301 \text{ GeV}$	
ZEUS CC	94 - 97	0.015	0.42	280	17000	47.7	[10]	$CC e^+ p \sqrt{s} = 301 \text{ GeV}$	
ZEUS NC	98 - 99	0.005	0.65	200	30000	15.9	[13]	NC $e^- p \sqrt{s} = 319$ GeV	
ZEUS CC	98 - 99	0.015	0.42	280	30000	16.4	[9]	$CC e^- p \sqrt{s} = 319 \text{ GeV}$	
ZEUS NC	99 - 00	0.005	0.65	200	30000	63.2	[14]	NC $e^- p \sqrt{s} = 319$ GeV	
ZEUS CC	99 - 00	0.008	0.42	280	17000	60.9	[15]	$\operatorname{CC} e^- p \sqrt{s} = 319 \text{ GeV}$	

Method

Prior to combination, data are :

- Shifted to a (x,Q²) common grid (~ no additional error)
- Moved to 920 GeV

$$\sigma_{NC\ 920}^{e^{\pm}p}(x,Q^2) = \sigma_{NC\ 820}^{e^{\pm}p}(x,Q^2) + F_L(x,Q^2) \left[\frac{y_{820}^2}{Y_{820}^+} - \frac{y_{920}^2}{Y_{920}^+}\right] + xF_3(x,Q^2) \left[\pm \frac{Y_{820}^-}{Y_{820}^+} \mp \frac{Y_{920}^-}{Y_{920}^+}\right]$$

 \rightarrow Up to 5% uncertainty at high y. It should not be done in the future.

• Average cross section are determined in a simulaneous fit of data. The fit is not physics model dependent !

Chi-2 definition

$$\chi_{\exp}^{2}\left(M^{i,\operatorname{true}},\alpha_{j}\right) = \sum_{i} \frac{\left[M^{i,\operatorname{true}} - \left(M^{i} + \sum_{j} \frac{\partial M^{i}}{\partial \alpha_{j}} \alpha_{j}\right)\right]^{2}}{\delta_{i}^{2}} + \sum_{j} \frac{\alpha_{j}^{2}}{\delta_{\alpha_{j}}^{2}}$$

This is the usual χ^2 definition - CTEQ-like M^i are measurements $M^{i,true}$ are averaged values α_j are the j sys errror sources δ_i are the uncorrelated errors

The Chi-2 is minimised with respect to M^{i,true} and a_j. The correlated systematics uncertainties are floated coherently, such that each experiment calibrates the other one!

→ Significant reduction of some correlated systematics !

Chi-2 definition : additional (or multiplicative) subtlety

$$\chi_{\exp}^2\left(M^{i,\operatorname{true}},\alpha_j\right) = \sum_i \frac{\left[M^{i,\operatorname{true}} - \left(M^i + \sum_j \frac{\partial M^i}{\partial \alpha_j}\alpha_j\right)\right]^2}{\delta_i^2} + \sum_j \frac{\alpha_j^2}{\delta_{\alpha_j}^2} \,.$$

Most systematic errors are usually estimated as relative error. But a smaller value of x-section has smaller absolute error. \rightarrow Bias towards smaller averages (checked with toy MC) Bias can be avoided by modifing Chi-2 definition.

$$\chi^2_{\exp}\left(M^{i,\text{true}},\alpha_j\right) = \sum_i \frac{\left[M^{i,\text{true}} - \left(M^i + \sum_j \frac{\partial M^i}{\partial \alpha_j} \frac{M^{i,\text{true}}}{M^i} \alpha_j\right)\right]^2}{\left(\delta_i \frac{M^{i,\text{true}}}{M^i}\right)^2} + \sum_j \frac{\alpha_j^2}{\delta_{\alpha_j}^2}$$

In practice a reevaluation of the absolute error after one iteration is sufficient. The overall effect is small, except for normalisation which is finally taken as relative.

Correlations between H1 and ZEUS data sets

Two clear cut cases:

- Radiative corrections are 100% correlated (same MC progs)
- 0.5% theoretical uncertainty on BH lumi cross section

Remainder not clear at all:

- extent of correlation difficult to ascertain
- both use similar methods to calibrate / reconstruct / simulate etc...
- consider rest to be 100% uncorrelated good approximation

 identify 12 common sources: γp background EM scale (Spa/LAr/RCAL/FCAL/BCAL) Had scale (Spa/LAr/RCAL/FCAL/BCAL) Electron Polar angle

Calculate 2¹²-1 averages taking all pairs as corr & uncorr in turn Determine deviations from central value average

Resulting deviations are small ~ 0.3 % except at low x high y, can be up to 2 %

A visible improvement : reduction of systematics at low Q² and reduction of statistical errors at high Q²

New low Q² measurements from H1

At this workshop, preliminary results on :

-Very low Q² domain -High y (i.e. low x) domain

Preliminary results on reduced cross sections

• NC DIS reduced ep cross-section at low Q2: $\sigma_{r} = \frac{Q^{2}x}{2\pi\alpha^{2}Y_{+}} \frac{d^{2}\sigma}{dxdQ^{2}} = F_{2}(x,Q^{2}) - f(y)F_{L}(x,Q^{2})$ $Y_{+} = 1 + (1 - y)^{2}$ $f(y) = \frac{y^{2}}{Y_{+}}$ dominant
sizable only at
high y

MB'99 vs SVX'00

Comb of MB'99+SVX'00 vs renormalised MB'97

Final (but still preliminary) combination

Data fill the transition region at $Q^2 \sim 1 \text{ GeV}^2$. Good agreement with ZEUS.

Combination improvement

A nice data set for future phenomenological fits

New H1 measurement at low Q² high y $12 < Q^2 < 50 \text{ Gev}^2$ and 0.75 < y < 0.9at Ep= 920 GeV

- It is part of the Q²,y domain where the F_L measurement is done, but at lower proton beam energies !
- The common experimental challenge is the low scattered electron energy $E'_e > 3.4 \text{ GeV}$:
 - Calorimeter linerarity (π° and ψ calibration)
 - Trigger efficiency (redundancy)
 - Photo production background (wrong charge track)
 - Radiative correction (measure 2 $E_{beam} = \Sigma (E^h P_z^h) + (E^{e'} P'_z^e)$)
- HERA II data : 51 pb⁻¹ e⁺p and 45 pb⁻¹ e⁻p

Preliminary cross sections

→ e⁺p and e⁻p cross section measurement are consistent → an import cross check since the two measurements are oppositely sensitive to the background charge asymmetry.

N. Raicevic

DIS 2007, 16-20 April, 2007

13

Errors reduced by a factor 2 !

New ZEUS measurement at high y $25 < Q^2 < 1300 \text{ Gev}^2 \text{ and } 0.1 < y < 0.8$ at $E_p = 920 \text{ GeV}$

- Same experimental challenges as H1.
- Main differences:
 - E' > 5 GeV
 - Larger scattering angle (to the electron beam direction)
 - Photoproduction background subtraction mainly from e-tagger events (no charge measurement)

Reduced cross section

Direct measurement of $F_L(Q^2,x)$

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2 Y_+}{Q^4 x} \left[F_2(x,Q^2) - f(y) \cdot F_L(x,Q^2) \right] = \frac{2\pi\alpha^2 Y_+}{Q^4 x} \sigma_r$$

At fixed (Q²,x), measure cross sections at several beam energies (minimum 2), i.e. at different y.

Perform straight line fit of σ_r to extract F_2 and F_L

F_L is very sensitive to small relative shifts on cross sections.

A challenging high y measurement at low E_p.

Successful runs of HERA at 460 GeV and 575 GeV

The 575 GeV run : a unique tool to control systematics

Nice data on tape

Summary

- New and improved results at low Q² (H1) and in the high y domain (H1 and ZEUS) have been presented. New analysis of low Q² data are still on going (H1).
- In a fuitful collaboration H1 and ZEUS are well on track to provide high precision (< 2 %) HERA F₂ data at low x. An important input to physics at LHC.
- Successful last runs at low and medium proton beam energies should provide a direct measurement of F_L with an unprecedented good precision. A new handle to the gluon density at low x.

EXTRAS

Systematic Error Shifts											
Shift uncertainty (in sigma)											
1	1 zlumi1_zncepl 0.0554 0.5887										
2	h2_Ee_Spacal	0.6568	0.3314								
3	h3_Ee_Lar_00	-0.3645	0.4448	30% correlation to this source							
4	h4_ThetaE_spacal	-0.7437	0.6556								
5	h5_ThetaE_94-97	-0.0655	0.7799			<u> </u>					
6	h6 ThetaE 00	-0.4051	0.5290 29	🤄 zd10_had_flow_b	0.0730	0.2375					
7	h7_H_Scale_Spacal	0.4592	0.4755 30) zd11	-0.4055	0.6174					
8	h8_H_Scale_Lar	-0.9265	0.5351 3	L z1ncee_scale	0.1777	0.9383					
9	h9_Noise_Hcal	-0.5037	0.3645 32	2 z2ncebg	-0.4073	0.9178					
10	h10_GP_BG_Spacal	-0.5141	0.8179 33	3 z3nceeff1	-0.1819	0.9120					
11	h11_GP_BG_LAr	0.9073	0.8510 34	4 z4nceeff2	0.5536	0.5544					
12	h12_BG_CC_94-97	0.3389	0.7871 3	5 z5ncevtx	-0.5180	0.9262					
13	h13_BG_CC_98-00	-0.7856	0.8846 3	5 z6nce-	0.1218	0.4138					
14	h14_ChargeAsym	0.0262	0.9993 37	7 z1cce-	0.0296	0.8350					
15	hllum11_SPACAL_bulk	1.5543	0.5588 38	3 z2cce-	-0.0152	0.8680					
16	hllumi2_SPACAL_MB	0.8375	0.5984 39	🛛 zlumi2_zccem	0.0708	0.7778					
17	h1lumi3_LAr_94-97_e+p	-1.0706	Q.6211 4	2d5nc00	0 1386	0 9843					
18	h1lum14_LAr_e-p	-0.0708	0.778 4	L zd7nc00	0.1566	0.2093					
19	h1lum15_LAr_2000	-0.7462	0.5982 4	2 zd8nc00	0.5163	0.9280					
20	zd1_e_eff	0.4572	0.7486 43	3 zluminc00	-0.4854	0.3837					
21	zd2_e_theta_a	0.1576	0.6797								
22	zd3_e_theta_b	-0.3849	0.7746	\mathbf{i}							
23	zd4_e_escale	0.8342	0.5079								
24	zd5_had1	0.3157	0.5906	`shift ~ 2% upwards							
25	zd6_had2	0.0581	0.6496	All other shifts within 1 a							
26	zd/_nad3	-0.7649	0./413								
27	zd8_had_tlow	0.6947	0.6619								
28	zd9_bg	-0.2358	0.4175								

High y HERA II compared to smaller y HERA I

Prospects at low β based on H1 parametrisation

Assuming $\langle F_L^D / F_T^D \rangle = 0.66$ at 0.6 $\langle \beta \rangle < 0.9$ Preliminary expectations :

 $< Q^2 > = 13 \text{ GeV}^2$ $< x_{Pom} > = 0.0004$ $< \beta > = 0.75$

 $< x_{Pom}.F_{D}^{L} > = 0.024 \pm 0.004 \pm 0.006$

With the same assumptions on systematic sources as at low β measurement at the 3 σ level at high β looks difficult but feasible