Proton-proton physics studies at the LHC with CMS/CASTOR

September 1, 2007

Workshop on low x physics, Helsinki

Pierre Van Mechelen Pierre.VanMechelen@ua.ac.be

The CMS detector

Z²⁰⁰

100

O

-10

-5

0

Maximal rapidity at the LHC given by:

$$y_{max} = \ln \frac{\sqrt{s}}{m} \approx 11.5$$

У

10

Forward detectors at CMS

Unprecedented coverage up to high rapidity!

T1 (CSC) $3.1 \le |\eta| \le 4.7$ **HF** $3 \le |\eta| \le 5$ **T2** (GEM): $5.3 \le |\eta| \le 6.6$ **Castor** $5.3 \le |\eta| \le 6.6$ **ZDC** $|\eta| > 8.5$ for neutrals

The CASTOR calorimeter

- extends the coverage in forward direction to $5.2 < \eta < 6.6 \rightarrow$ enhances the hermiticity of CMS!
- 14.37 m from the interaction point
- octogonal cylinder with inner radius 3.7cm, outer radius 14cm and total depth 10.5 λ_i
- signal collection through Čerenkov photons transmitted to PMTs through aircore lightguides
- W absorber & quartz plates sandwich, with 45° inclination with respect to the beam axis
- electromagnetic and hadronic sections
- 16-fold segmentation in φ 14-fold segmentation in z no segmentation in η
- staged construction: 1 CASTOR in 2008, maybe a second CASTOR in 2009

CASTOR specifications

- hadronic section
 - absorber: tungsten plates of 10mm thickness
 - active material: fused silica plates of 4mm thickness
 - 5 tungsten-quartz sandwiches form 1 reading unit
 - total interaction length (2+12 r.u.) 10.3 λ_i

- absorber: tungsten plates of 5mm thickness
- active material: fused silica plates of 2mm thickness
- 5 tungsten-quartz sandwiches form 1 reading unit
- total radiation length (2 reading units) =20.12 X_o

How to get interesting physics at small polar angles?

1. parton-parton scattering: $qq \rightarrow X$

- X can be jets, Drell-Yan pairs, prompt photons, heavy quark pairs, ...
- X goes forward if $x_2 \ll x_1 \rightarrow$ access to low- $x_{Bjorken}$ proton structure:

$$x_{Bj} = \frac{Q}{\sqrt{s}}e^{-\eta}, \qquad Q = p_T, M, \dots$$

- → at LHC (for $Q \ge 1$ GeV and $\eta = 8$): $x_{\text{Bjorken}} \ge 10^{-8}$
- → $x_{Bjorken}$ decreases by factor 10 for each 2 units in rapidity

Proton structure at low x

→ strong rise of $F_2(x,Q^2)$ at low x observed at HERA

→ extrapolation to LHC?

• Kinematics of pp $\rightarrow e^+e^-X$:

$$M^{2} = sx^{+}x^{-} \qquad x^{\pm} = \frac{M}{\sqrt{s}} \exp^{\pm y}$$
$$x_{F} = \frac{p_{z}^{+} + p_{z}^{-}}{\sqrt{s/2}} = x^{+} - x^{-}$$

- → asymmetric x_{Bj} values ($x^- \ll x^+$) will boost the leptons to large rapidity
- → pdf known at high x^+ ⇒ constrain pdf at low x^-
- CASTOR acceptance:
 - → low mass DY in CASTOR probes the proton down to $x_{Bj} = 10^{-6} - 10^{-7}$
 - → constraint of global parton density fits!

Rise of F_2 tamed by saturation?

- CTEQ 5M1: standard, "non-saturated" pdf
- EHKQS: "saturated" pdf with nonlinear terms in gluon evolution
 [A. Dainese et al., HERA-LHC Workshop proc.]
 - → Saturation effects cause a 30% decrease in the DY cross section!

[[]PVM, CMS-note 2007/002]

Event yield: ~2 million events/fb⁻¹ in CASTOR

Prompt γ

10

 Forward prompt photons are mainly produced through

 $qq \rightarrow g\gamma$ $qg \rightarrow q\gamma$

- Large imbalance in fractional momenta of incoming partons boosts photons forward
 - → access to low x with prompt photons in CASTOR

Forward jets

11

 Forward jets are mainly produced through

- Large imbalance in fractional momenta of incoming partons boosts jets forward
 - \rightarrow access to low x with jets in CASTOR

b Single inclusive forward jets

- Single inclusive forward jets probe the low-x structure of the proton
 - \rightarrow saturation will reduce the jet cross section

- Depending on the multiple interaction ansatz more or less energy is taken from the beam remnants
 - \rightarrow M.I. will increase the jet energy

Forward jets and BFKL dynamics

- Different approaches for parton showers result in different signatures i the final state:
 - DGLAP (as in standard PYTHIA) use k_{τ} ordered QCD cascades \rightarrow few forward jets with high \underline{p}_{T}
 - CDM (as in PYTHIA+ARIADNE) has no ordering in k_{τ} \rightarrow produces more high <u>p</u>_T forward jets (mimics BFKL)
- Look for large and collimated energy deposits in CASTOR
 - doubling of cross section for jets with E > 1000 GeV ($\underline{p}_{\tau} \ge 5$ GeV)
- Studies of multiple jets and correlatior between central and forward jets will give information on fixed order ME calculations and PS

Energy deposited in 1 CASTOR φ -sector

РҮТНИ

13

Mueller-Navelet dijets

- Large rapidity separation enhances phase space for BFKL
- BFKL predicts de-correlations in azimuthal angles from jets for increasing $\Delta \eta$
- Low x saturation effects in BFKL ladder?
 → biggest reduction for largest rapidity separations

[C. Royon, HERA-LHC workshop, following A. Sabio Vera and F. Schwenssen, hep-ph/0702158 and hep/ph0602250]

Multiple interactions

15

- → higher particle multiplicity (additional energy offset in jet profiles)
- → long distance correlations in rapidity (need to cover forward region!)
- → additional hard interactions may fake a discovery signal ! (e.g. pp → W H X with H → bb vs. pp → W bb X)

Hultiple interactions: MC tuning

16

LHC prediction for average multiplicity transverse to the leading jet:

- → huge differences for the different generators and tunes
- → better understanding of multiple interactions is needed for MC tuning!

Particle and energy flow

Effect of M.I. on particle flow vs. rapidity:

Central-forward correlations

18

→ discriminative power for different M.I. tunes

Diffraction

3. <u>Hard diffractive scattering</u>

• One or both protons survive hard interaction (yielding jets, heavy quarks, ...)

- → diffraction (including soft diffraction) makes up 25% of σ_{tot} !
- → tool to study (perturbative) QCD and the structure of hadrons
- Diffractive Higgs production pp -> p H p
 - → particularly clean channel for the study (or discovery) of the Higgs boson

Rapidity gaps

• Diffractive production of jets:

 $pp \rightarrow p$ jet jet p

- Trigger study by Monika Grothe et al.:
 - → possible to trigger on E_T>40
 GeV dijets with proton tag in L1 trigger

 M_{max} for double gaps ξ_{max} y_{max} 0.0002 3 GeV 3.0 5.0 0.0015 20 GeV 5.2 0.0018 25 GeV 6.6 0.0074 100 GeV 0.8 0.0302 420 GeV

⇒ not many inclusive jet events with double gaps including HF !

Hard diffraction: dijet+gap rate

21

- L1 condition: (2 jets with $|\eta| < 2.5$ and $E_{\tau} > 40$ GeV) and (E_{tot} (single sided HF/CASTOR) $< E_0$)
- HLT strategies to be studied additional conditions on central jets (same as for proton-tagged events)

CASTOR test beam results

One full octant (2x (2 em + 12 had) reading units) assembled and tested in beam (Aug 20-Sep 3)

Testing different options for photomultipliers, electronics, ...

Timeline

23

Construction & Implementation Schedule for one Calorimeter (LCAL) v1.2 (150507)

		Month												
	TASKS	5/07	06/07	07/07	08/07	09/07	10/07	11/07	12/07	01/08	02/08	03/08	04/ 8	05/08
1	Construction of skeleton													
2	Fabrication 1120 Q-plates													
3	Fabrication 560 W-plates													
4	Fabrication 224 light guides													
5	Delivery/testing PMTs, bases													
6	FE/Trigger/DAQ electronics													
7	Assembly													
8	Surface testing													
9	Installation in beam line													
10	Installation cables & services													

6

24

Groups currently contributing to the project:

- Athens Design, MC sim's, funding; Project coordination
- Antwerp PMTs, "electronics", funding; Electronics coordination
- CERN Beam tests; SW-Physics coordination
- CuKurova PMT testing
- DESY FEA calculations, construction pre-prototype
- JINR Dubna Design, technical manpower; Technical coordination
- INR, Moscow Light guides & 2mm Q-plates, funding
- ITEP, Moscow Laser/LED calibration system
- Northeastern
 - U Iowa, ++ Applied for NSF-MRI grant

Readout devices, construction pre-prototype, funding

Conclusion

- CASTOR is a real, funded and accepted project
- CASTOR will cover pseudorapidities between 5.2 and 6.6
- It provides unprecedented and unique opportunities to study low x, multiple interactions and diffraction at the LHC:
 - e^+e^- pairs from Drell-Yan, Z⁰, J/ ψ , ...
 - Prompt photons
 - Forward jets (+central jets or W^{\pm}/Z^{0})
 - Forward/central particle and jet correlations
 - Dijets at large $\Delta \eta$, rapidity gaps between jets
 - Hard diffraction (large rapidity gaps)
- If you want a particular measurement to be made, using calorimeter coverage between 5.2 and 6.6, please let us know!
- Many thanks to:

Hannes Jung, Kerstin Borras, Monika Grothe, Apostolos Panagiotou, ... for information and discussions.

Hard diffraction: gap+dijet+gap rate

L1 condition:

(2 jets with $|\eta| < 2.5$ and $E_T > 40$ GeV) and (E_{tot} (double sided HF/CASTOR) $< E_0$)

HLT strategies to be studied

additional conditions on central jets (same as for proton-tagged events)

Background estimates

Non-diffractive background surviving the rapidity gap cut (energy smearing over cut is not considered)

CASTOR only

Cut (GeV)	Non-diff	Single-diff ($\xi < 0.002$)	% bg						
0	638	4545	12.2						
50	1842	4550	28.8						
100	3509	4550	43.5						
150	5559	4550	55.0						
200	7836	4550	63.3						
Δ STOR + 7DC (E < 50 GeV)									

CASTOR + ZDC ($E_{ZDC} < 50 \text{ GeV}$) Cut (GeV) Non-diff Single-diff ($\xi < 0.002$) % bg 0 141 4545 3.0 50 430 4550 8.6 100 781 4550 14.7 22.1 150 1263 4550 28.2 200 1789 4550

Question:

- what background level is acceptable?
- how large is the systematic error due to the correction for background?

Studies will continue...

Note: particles below the Čerenkov threshold are invisible anyway!

28