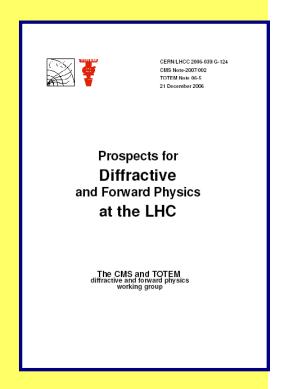
# Forward Physics and Low-x at the LHC

# Albert De Roeck CERN


Low-x Meeting Helsinki Finland 29 August - September 1 2007



### The LHC Machine and Experiments Luminosity First phase 2•10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> CERN LHC - B ATLAS Point 1 ALICE High lumi phase Point 2 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> CMS Point 5 SPS LHC - B LHCf (moedal) pp collisions at 14 TeV CMS totem First data expected in summer 2008 E540 - V10/09/97

# History

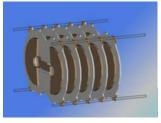
- First discussion at the low-x meetings: Oxford (2000)
   "Low-x physics at the LHC" (ADR)
- At the time
  - No forward detectors at CMS/ATLAS (acceptance  $|\eta| < 5$ )
  - No diffractive/low-x program
  - No connection between TOTEM & CMS
- Since then a lot has happened
  - Forward detectors proposed and several being built
  - Physics program elaborated as part of the CMS/ATLAS (ALICE/LHCB) program
  - CMS/TOTEM common physics study & data taking possibility
  - New experiment LHCf...

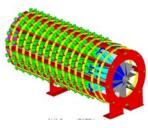


## Forward Detectors at the LHC

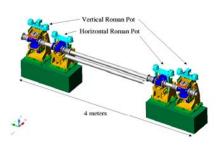
- 1. CMS (fwd. EOI submitted Jan.'04, CMS+TOTEM LOI LHCC-2006-039):
  - CASTOR, ZDCs, TAS (under consideration) + TOTEM
  - Soft&hard diffraction (w/ TOTEM or rapgaps), low-x QCD, cosmic-rays, γ-p, γ-A, γ-γ
- 2. ATLAS (fwd. LOI submitted Mar.'04):
  - ALPHA RPs (LOI R&D), LUCID, ZDC (approved 2007), TAS (under consideration)
  - Total p-p cross-section, photo-production (UPC Pb-Pb)
  - RP220: detectors for diffraction at 220 m.
- 3. **ALICE**:

- 4. LHCb:
- ZDCs, fwd. muon spectrometer
- Diffraction, low-x QCD


- Forward muon spectrometer
- Low-x PDFs
- 5. **TOTEM** (approved LHCC July'04):
  - Roman pots (220 m), trackers (T1, T2)
  - Elastic scattering, total p-p cross section, soft diffraction
- 6. LHCf (approved LHCC 2006):
  - EM Calo (ATLAS-TAN, 140 m)
  - Cosmic-rays (forward  $\gamma,\pi^0$ )
- 7. **FP420** (R&D collab. LHCC-2005-025):
  - →Feasibility studies for near-beam dets. at 420m
  - QCD, exclusive Higgs, new physics


### Forward Detectors at LHC

TOTEM -T2 CASTOR ZDC/FwdCal TOTEM-RP FP420









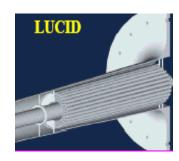


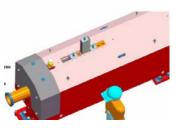


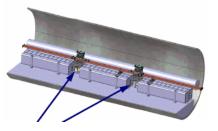



IP5

14 m


16 m


14 0 m


147 m - 220 m

**IP1** 











**LUCID** 

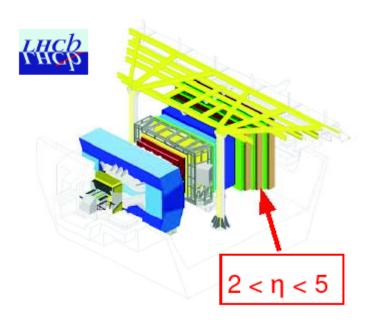

**ZDC** 

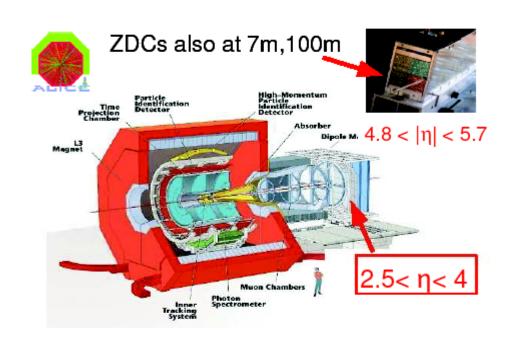
ALFA/RP220

FP420

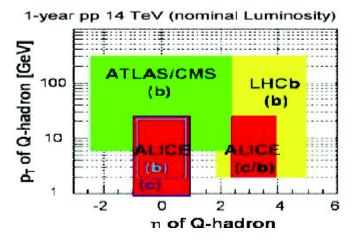
# Castor 2007 Testbeam (August 07)





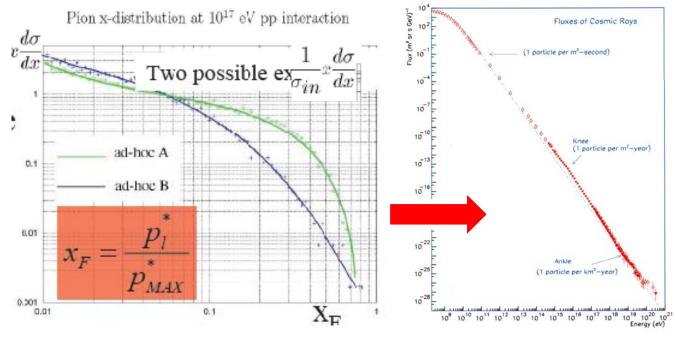

More from Pierre Van Mechelen on Saturday

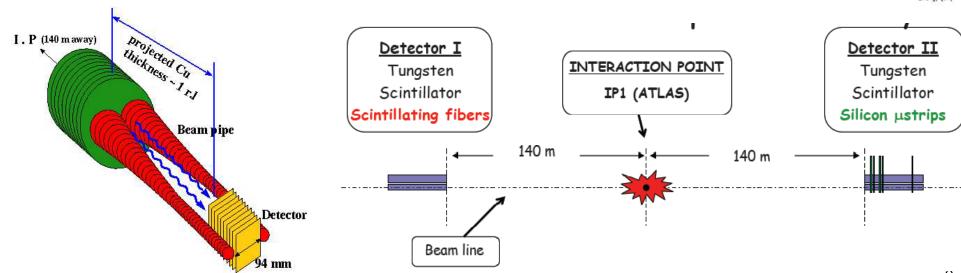

### But also ALICE and LHCb...

Forward muon spectrometers:

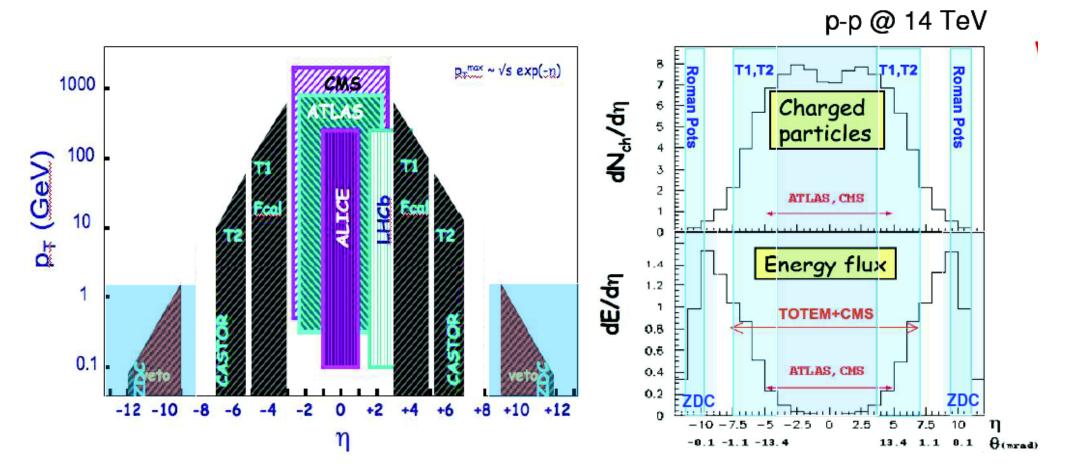





➤ Good capabilities for fwd. heavy-Q, QQ, gauge bosons measurements: (low-x PDFs)




# LHCf: an LHC Experiment for Astroparticle Physics


LHCf: measurement of photons and neutral Pions and neutrons in the very forward region of LHC

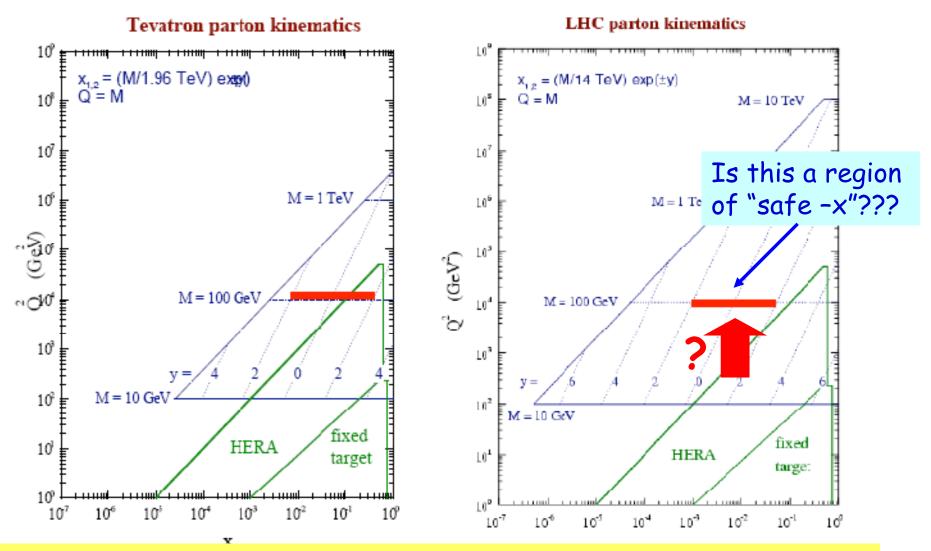
140 m from IP1 (ATLAS)





# Acceptance of the LHC Detectors




- All phase space virtually covered at the LHC
   for the first time at a collider—
- Ongoing CMS/ATLAS studies to cover the 'remaining hole'

# Forward Physics Program

- Soft & Hard diffraction
  - Total cross section and elastic scattering (TOTEM (ATLAS), precision of O(1)%)
  - Gap survival dynamics, multi-gap events, proton light cone (pp $\rightarrow$ 3 jets+p), odderon
  - Diffractive structure: Production of jets, W,  $J/\psi$ , b, t, hard photons; GPDs
  - Double Pomeron exchange events as a gluon factory (anomalous W,Z production?)
- Exclusive production of new mass states
  - Exclusive Higgs production, (Exclusive Radion production?), exclusive SPE??
  - SUSY & other (low mass) exotics & exclusive processes
- Low-x Dynamics
  - Parton saturation, BFKL/CCFM dynamics, proton structure, MPI scattering...
- New Forward Physics phenomena
  - New phenomena such as DCCs, incoherent pion emission, Centauro's
- Strong interest from cosmic rays community
  - Forward energy and particle flows/minimum bias event structure
- Two-photon interactions and peripheral collisions
- Forward physics in pA and AA collisions
- Use QED processes to determine the luminosity to O(1%) (pp $\rightarrow$ ppee, pp $\rightarrow$ pp $\mu\mu$ )

Many of these topics can be studied best at startup luminosities

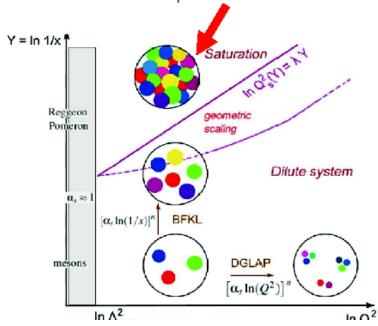
# LHC Kinematics/QCD evolution

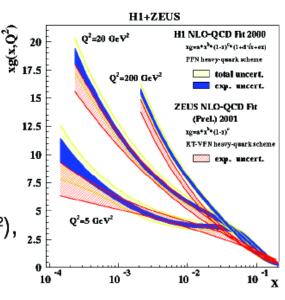


Evolution of PDFs to high Q2 & low x important at the LHC Precision? Level of approximation? CCFM/BFKL?, non-linear effects?

### Parton Saturation and evolution at low-x

- Strong rise at low-x of gluons (HERA):
- Radiation controlled by QCD evolution eqs.:


 $Q^2$  - DGLAP:  $F_2(Q^2) \sim \alpha_s \ln(Q^2/Q_0^2)^n$ ,  $Q_0^2 \sim 1 \text{ GeV}^2$ 


x - BFKL:  $F_2(x) \sim \alpha_s \ln(1/x)^n$ 

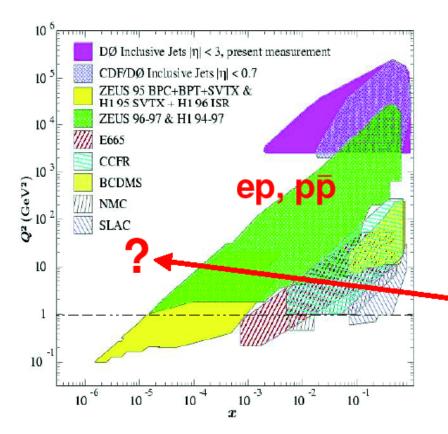
Linear equations (single parton radiation/splitting)

cannot work at low-x: Unitarity violated (even for  $Q^2 >> \Lambda^2$ ), <sub>2.5</sub>

collinear & k<sub>T</sub> factorization invalid

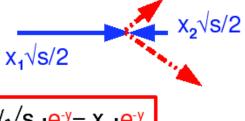





- Gluon-gluon fusion balances parton branchings below "saturation scale":
- Enhanced in nuclei (A<sup>1/3</sup>~6):
- CGC = effective-field theory describes hadrons as classical fields below Q<sub>e</sub>
- Non-linear JIMWLK/BK evolution eqs.

#### Low-x PDF studies

pp @ 14 TeV :


D. d'Enterria

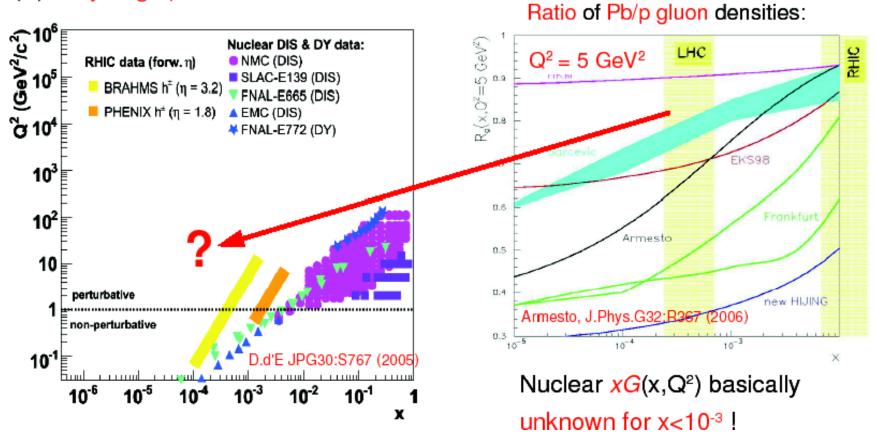
- (i) At y=0, x=2p<sub>T</sub>/ $\sqrt{s}$ ~10<sup>-3</sup> (domain probed at HERA,Tevatron). Go fwd. for x<10<sup>-4</sup>
- (ii) Saturation momentum:  $Q_s^2 \sim 1 \text{ GeV}^2(y=0)$ , 3 GeV<sup>2</sup> (y=5)
- (iii) Very large perturbative cross-sections:



$$p(p_1)+p(p_2) 
ightarrow \mathrm{jet} + \gamma + \mathrm{X}$$
 Prompt  $\gamma$   $p(p_1)+p(p_2) 
ightarrow lar{l} + \mathrm{X}$  Drell-Yan  $p(p_1)+p(p_2) 
ightarrow \mathrm{jet}_1 + \mathrm{jet}_2 + \mathrm{X}$  Jets  $p(p_1)+p(p_2) 
ightarrow \mathrm{Q} + ar{\mathrm{Q}} + \mathrm{X}$  Heavy flavour  $p(p_1)+p(p_2) 
ightarrow W/Z + \mathrm{X}$  W,Z production

Fwd. production:



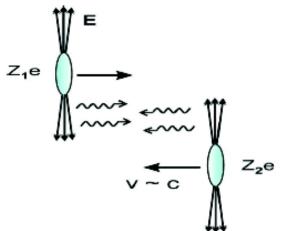

$$X_2^{min} \sim p_T / \sqrt{s} \cdot e^{-y} = X_T \cdot e^{-y}$$

Every 2-units of y,  $x^{min}$  decreases by ~10

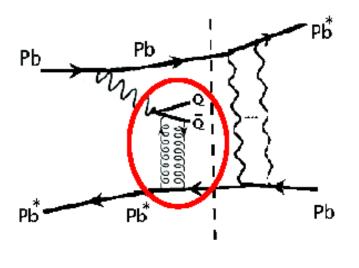
### Low-x nuclear PDF studies

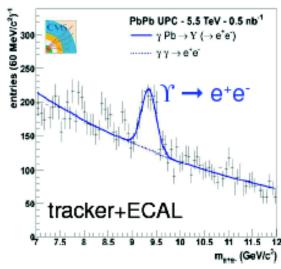
PbPb @ 5.5 TeV, pPb @ 8.8 TeV:

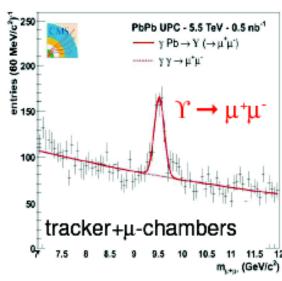
- D. d'Enterria
- (i) Very high √s ⇒ Bjorken x=2p<sub>7</sub>/√s~30-45 times lower than AuAu,dAu @ RHIC!
- (ii) Saturation momentum ( $A^{1/3}\sim6$ ) :  $Q_s^2\sim[5~GeV^2]e^{(0.3y)}$
- (iii) Very large perturbative cross-sections.




#### Example: Y production

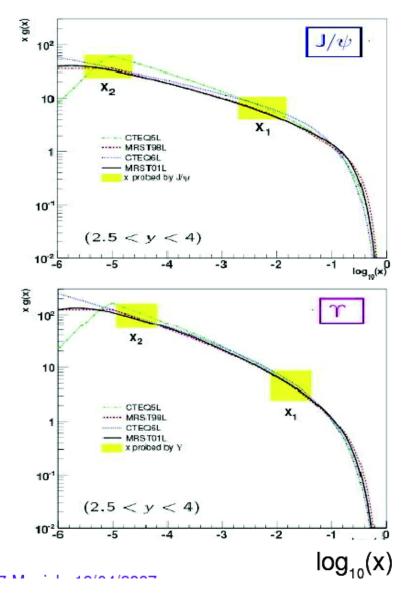

High energy heavy-ions produce strong electromagnetic fields due to the coherent action of  $Z_{Pb}$  = 82 protons:


Equivalent flux of photons in EM (aka. Ultra-Peripheral, b<sub>min</sub>~ 2R<sub>A</sub> ~20 fm) AA colls.: Max. γ energy: E<sub>γmax</sub> ~ 80 GeV (PbPb-LHC)

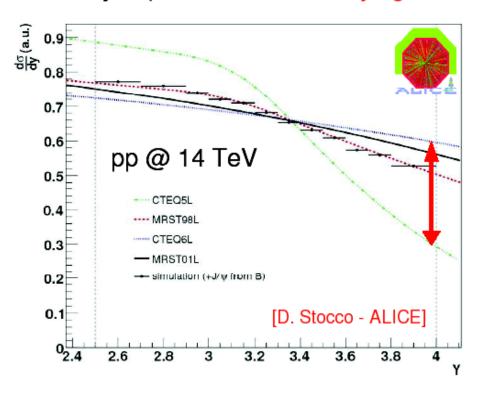

 $\gamma$  Pb: max.  $\sqrt{s_{\gamma Pb}} \approx 1$ . TeV  $\approx 3$ . - 4.  $\times \sqrt{s_{\gamma D}}$  (HERA)



QQ diffractive photoprod. (ZDC n-tagging) sensitive to |xG|2






# Forward QQ production in ALICE

> J/ $\psi$  measurement in μ-spectrometer (2.5 <  $|\eta|$  < 4): xg(x) at  $x_2 \sim 10^{-5}$ 



dσ/dy J/ψ: NLO CEM w/ varying PDFs



QQbar: Sensitive to diff. PDFs and DGLAP vs non-linear evolutions

# Forward physics studies in ALICE

#### Diffractive $J/\psi$ production in pp collisions

- First estimates by Schäfer, Mankiewicz, Nachtmann 1991
- pQCD estimate by Bzdak, Motyka, Szymanowski, Cudell

- Photon: t-integrated 
$$\frac{d\sigma}{dy}\Big|_{y=0} \sim 15 \text{ nb} \quad (2.4 - 27 \text{ nb})$$

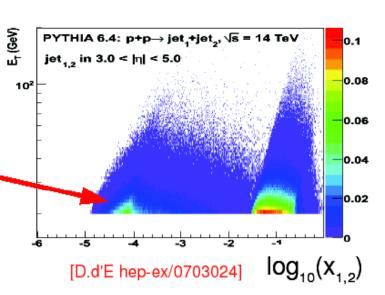
- Odderon: t-integrated 
$$\frac{d\sigma}{dy}\Big|_{y=0}^{\infty} \sim 0.9 \text{ nb} \quad (0.3 - 4 \text{ nb})$$

Schicker EDS07

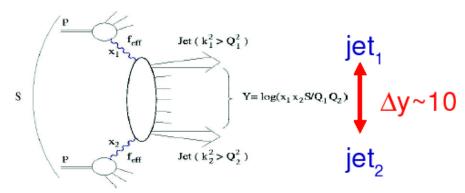
At L = 
$$5 \times 10^{30}$$
 cm<sup>-2</sup>s<sup>-1</sup>:

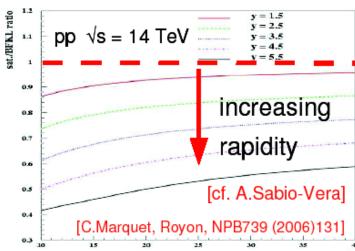
- $\rightarrow$  0.15 J/\Piin ALICE central barrel in 1 s, 150k in 10\(^6\) s
- $\rightarrow$  9000 in  $e^+e^-$  channel in 10<sup>6</sup> s
- → identify Photon and Odderon contribution by analysing p<sub>T</sub> distribution (Odderon harder p<sub>T</sub> spectrum)

# Forward dijets in pp


Forward "soft" jets (E<sub>T</sub> ~20-100 GeV):

$$p + p \rightarrow jet1 + jet2 + X$$
 (VBF-Higgs trigger)


Jets in HFs sensitive to :  $x_2 \sim 10^{-4}$ 


Jets in CASTOR (5.3 <  $|\eta|$  < 6.6):  $x_2 \sim 10^{-6}$ !

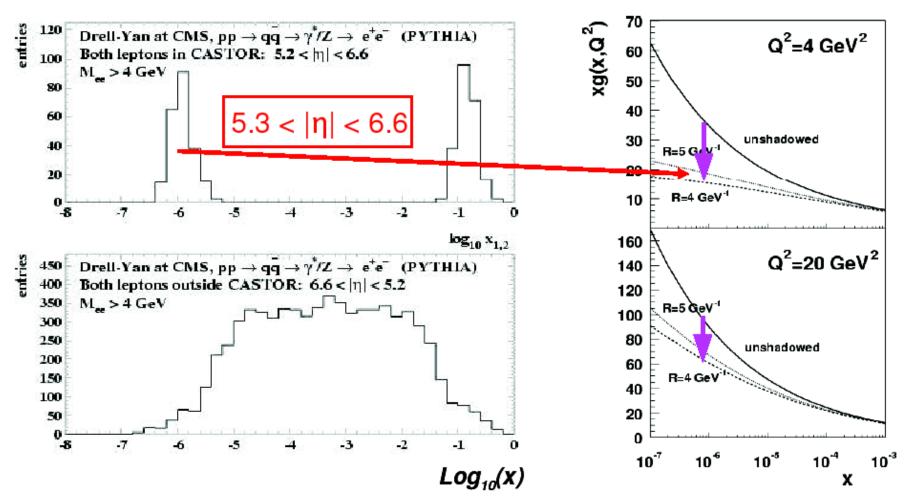
Stats. ~10<sup>7</sup>/1 pb<sup>-1</sup>, large? jet reco systematics



Mueller-Navelet dijets separated by large Δy: very sensitive to non-DGLAP evolution

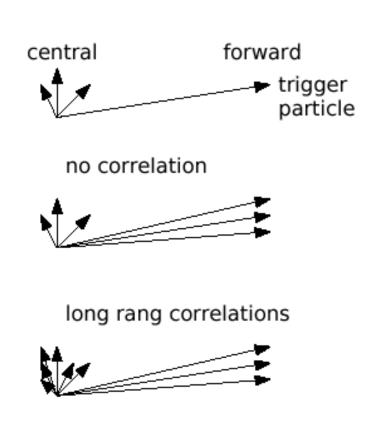


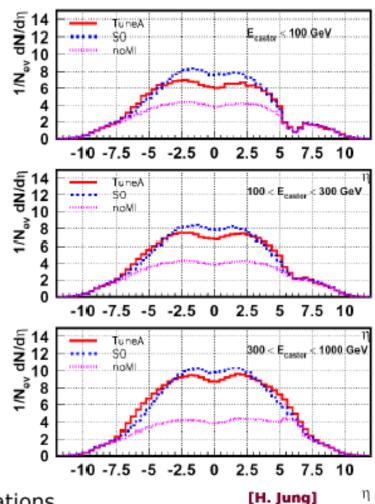



 $^{\circ}$  Q (GeV)  $^{\circ}$  10<sup>4</sup> dijets (HF±,E $_{T}$ >30 GeV): enough stats. for detailed studies of  $\Delta y$ -evolution

### Forward Drell-Yan in pp

See P. Van Mechelen


- Drell-Yan feasibility studies with CMS (CASTOR) + TOTEM (T2):
- Sensitive to low-x


PDF parametrizations



TOTEM T2 tracker+ CASTOR needed to deal w/ large QCD (& QED) bckgd

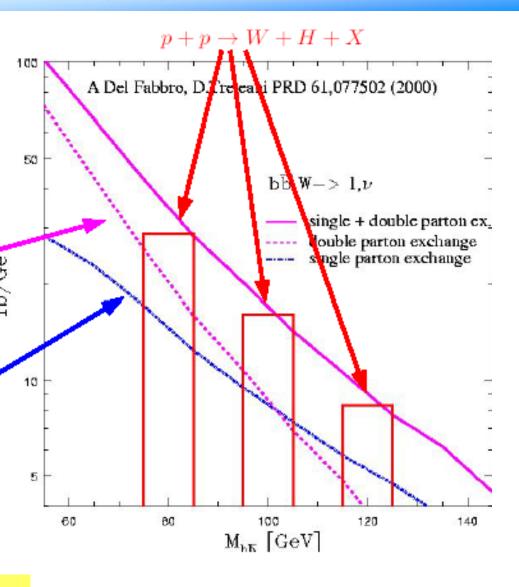
# Central/forward particle correlations





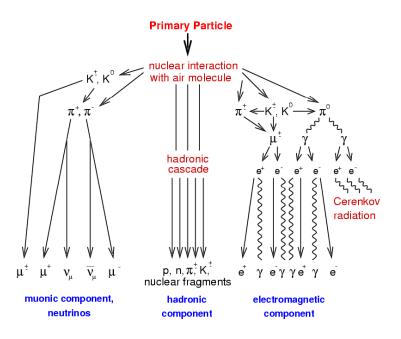
- → forward condition uncovers long range correlations
- → discriminative power for different M.I. tunes

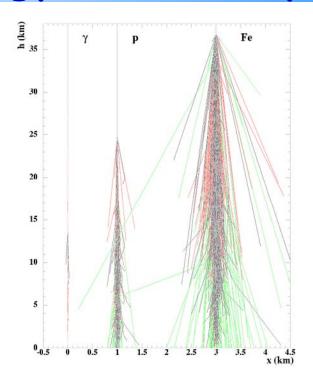
# Double Parton interactions


 $m{ ilde{ heta}}$  Higgs: p+p o W+H+X with  $W o l
u,\; H o bar{b}$ 

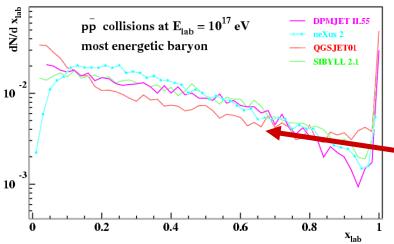


 $p + p \to W + X$  $p + p \to b\bar{b}X$ 


 compared to single parton scattering


$$p+p\to W+b\bar b+X$$

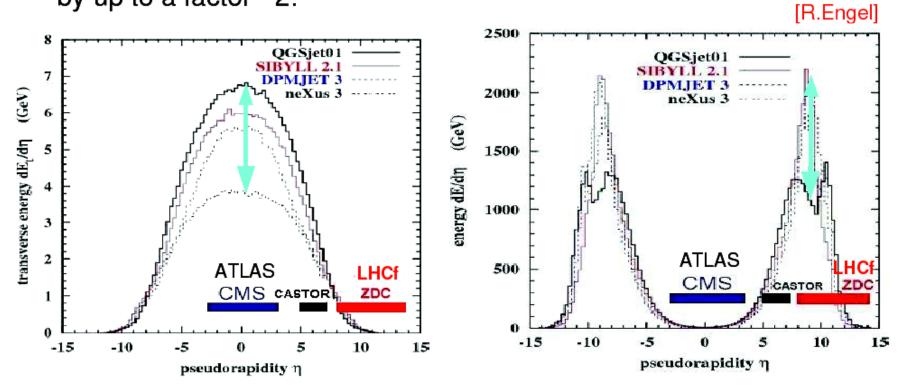



Not well know what to expect...

# High Energy Cosmic Rays






Cosmic ray showers: Dynamics of the high energy particle spectrum is crucial



Interpreting cosmic ray data depends on hadronic simulation programs
Forward region poorly know/constrained
Models differ by factor 2 or more
Need forward particle/energy measurements
e.g. dE/dn...

# CR: Calibration and tuning of hadronic models

Model predictions of particle multiplicity & energy flow at LHC differ by up to a factor ~2:



ZDCs,LHCf: Measurement of fwd dN/dη,dE/dη leading baryon (n), neutral meson (π°,K°<sub>s</sub>) in pp, pA, AA at E<sub>lab</sub>~100 PeV: Strong EAS model constraint [CRs collisions: p-Air, α-Air, Fe-Air]

#### Cosmic Exotica

- E~10<sup>15</sup>-10<sup>17</sup> eV cosmic-rays ("Centauro") events observed:
  - (i) anomalous number of (N~0) electromagnetic secondaries
  - (ii) forward "long-flying" (i.e. non-interacting) component

"strangelets"?
"DCCs"?

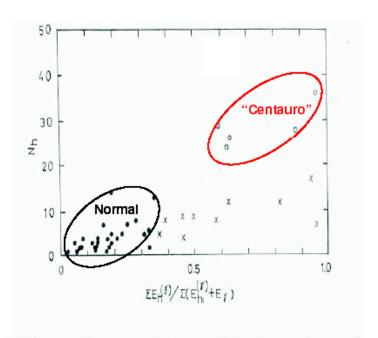
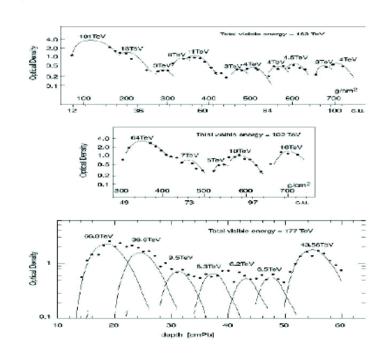




Figure 2.5: Diagram of the number of hadrons and hadronic energy fraction: Chacaltaya events with the total visible energy greater than 100 TeV [38]: ( $\circ$ ) Centauro, ( $\star$ ) Mini-Centauro, ( $\bullet$ ) others; ( $\star$ ) C-K [36].



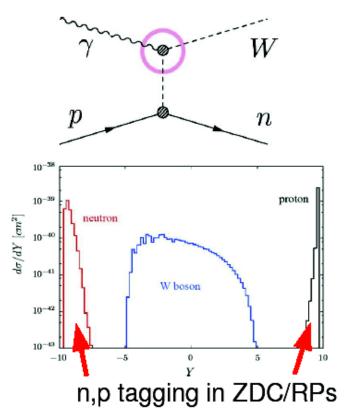
CMS-CASTOR (longitud. segmentation) can access this research programme.

# Two photon and $\gamma W$ interactions

Exclusive I<sup>+</sup>I<sup>-</sup> (e<sup>+</sup>e<sup>-</sup>, μ<sup>+</sup>μ<sup>-</sup>) production

QED process: σ known precisely (LPAIR)

Signature: back-to-back leptons

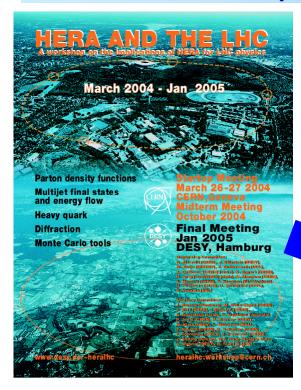

RPs: reco of proton  $\xi$  w/ resol. of 10-4

~300 evts./100 pb-1 after CMS  $\mu$  trigger

- Absolute p-p luminosity within ~3% (theo)
- Cross-calibration of near-beam dets.

W-photoproduction:

Triple (anomalous?) gauge couplings




~50 evts./100 pb-1 in p-p 14 TeV

[Also quartic couplings via  $\gamma\gamma$ →WW,ZZ]

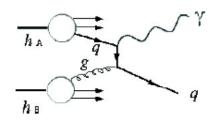
# HERA and the LHC

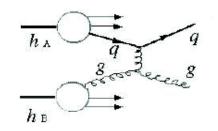
Workshop and forum on the implication of HERA for LHC physics





Next meeting 29 Oct-2 Nov @ DESY ⇒Working group meetings

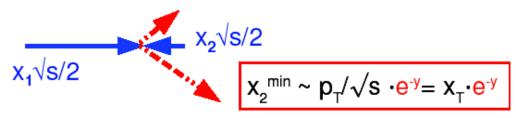

- Low-x
- PDFs
- Diffraction...




# Eg. Experimental Probes of the Gluon

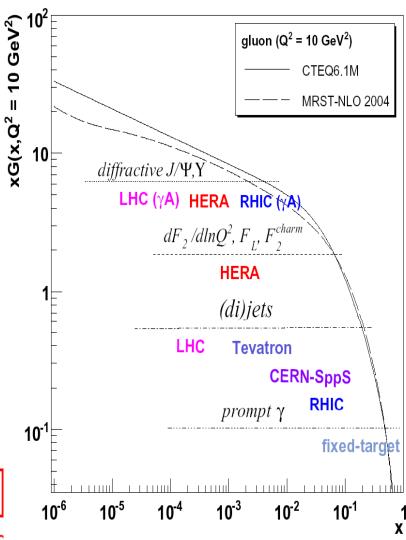

#### Perturbative processes:

Prompt γ, (di)jets (γ<sup>(\*)</sup>p, pp, AA):






Diffractive QQ, heavy-Q (γ<sup>(\*)</sup>p, γ<sup>(\*)</sup>A):




Forward production:



Every 2-units of y,  $x^{min}$  decreases by ~10

#### D. d'Enterria



## Finally:

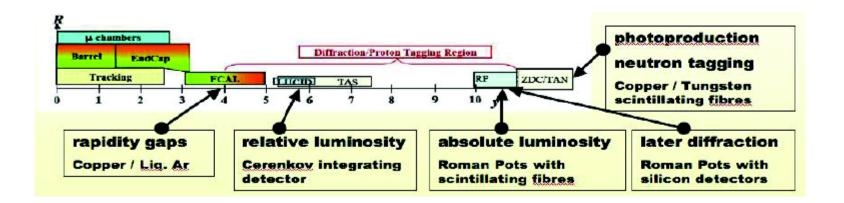
Call for a working group/task force/LHC-study group ...

FITPDF?

⇒The PDF + uncertainties

NEED A JOINT EFFORT OF THEORISTS AND LHC EXPERIMENTALISTS:

- WHICH PRECISION MEASUREMENTS ARE LIMITED BY PDFS?
- WHEN DOES LACK OF PDF KNOWLEDGE HIDE/SIMULATE NEW PHYSICS?
- HOW CAN LHC MEASUREMENTS IMPROVE PDF DETERMINATION?


Interest from theorists/fitters/HERA/ LHC/...?

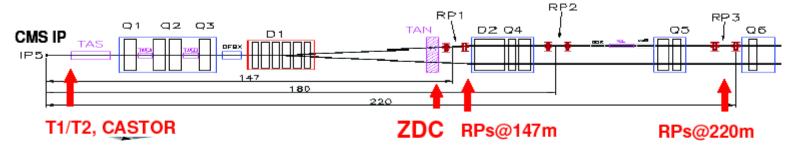
... Need to call for a meeting

#### Conclusion

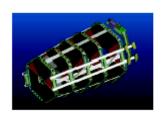
- LHC is coming on-line: expect the first 14 TeV collisions by summer 2008
- Forward physics @ LHC came a long way during the last years!! We saw
  - 2 experiments approved for forward physics (TOTEM, LHCf)
  - ATLAS and CMS planning to extend the detector coverage in the forward direction
  - CASTOR forward calorimeter in CMS (LUCID in ATLAS)
  - ZDCs in ATLAS and CMS
  - Roman Pots in ATLAS at 220 and 240 m (but not for start-up)
  - Common physics program/data taking for CMS and TOTEM
  - FP420 coming along...
- · Diverse program for low-x physics (and diffraction) has been developed
  - Part of the "base-line" physics opportunities of the LHC
  - New ideas for measurements are still highly welcome to keep momentum
- Forward physics and diffraction now "in the blood" of the experiments.
   Let's capture that opportunity!!

# Backup

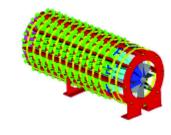


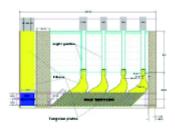

LUCID (Cerenkov Tubes): 17 m, 5.4 < |η| < 6.1</li>
 Relative luminosity

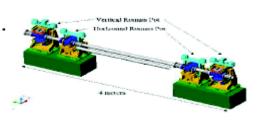
ZDC (W/Q-fiber calo): 140m, |η| > 8.3 (neutral)
 n,γ detection: relative lumi, CRs, heavy-ions
 (L1 trigger, centrality, photoprod, ...)


ALPHA (Sci-Fi in RPs): 240 m.
 Abs. lumi (elastic scatt. in Coulomb interf. region)



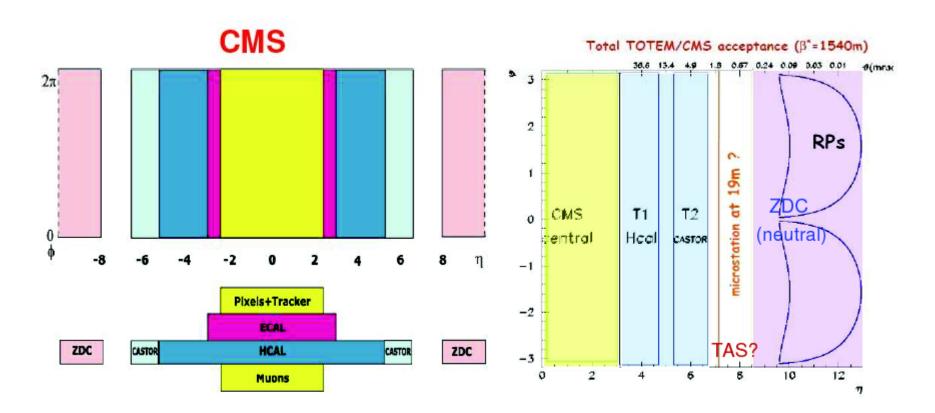

LUCID is ~17m from the IP- covering 5.4 < |n|< 6.1 168 Cerenkey tubes each side of IP – time res. ~100s





- TOTEM-T1 (CSC telescope): 3.1 < |η| < 4.7
- TOTEM-T2 (GEM telescope): 5.3 < |η| < 6.7</li>
   Soft diffraction (SD,DPE), MB/UE/MPI
- CASTOR (W/-Q-fiber calo): 5.3 < |η| < 6.5</li>
   Miss.-E<sub>T</sub>, diffract., low-x QCD, MB/UE/MPI, heavy-ions (L1 trigger, centrality, ...), CRs
- ZDC (W/Q-fiber calo): |η| > 8.3 (neutral)
   CRs, heavy-ions (L1 trigger, centrality, γ-A, ...
- TOTEM Roman pots: 147, 220 m
   Leading p: σ<sub>tot</sub>, elastic scatt., diffraction













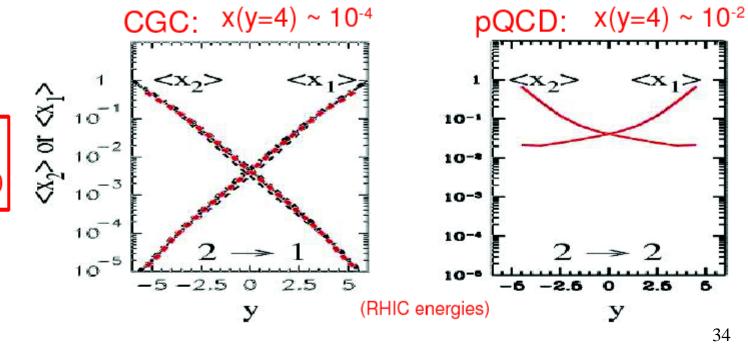

CMS (central,CASTOR,ZDC)+TOTEM: largest acceptance ever at a collider



2 → 2 parton kinematics:

**y = 0**: 
$$x_1 \sim x_2 \sim x_T = 2p_T / \sqrt{s}$$
  
 $x_2 \sqrt{s/2}$   $x_1 \sqrt{s/2}$ 

$$x_{1,2}^{2\to 2} = \frac{p_T}{\sqrt{s}} (e^{\pm y} + e^{\pm y'}) \Rightarrow x_2^{min} = \frac{x_T e^{-\eta}}{2 - x_T e^{\eta}}$$


$$x_2\sqrt{s/2} \qquad \text{e.g. LHC, p}_T = 10 \text{ GeV/c}$$

$$\theta \sim 10^{-3} (\eta \sim 7): x_{min} \sim 10^{-6}$$

2 → 1 (gluon fusion) CGC kinematics: much lower x allowed (x₂~x₂<sup>min</sup>)

$$x_{1,2}^{2\to 1} = \frac{p_T}{\sqrt{s}} \left(e^{\pm y}\right)$$

Every 2-units of y,  $x_2$  decreases by ~10



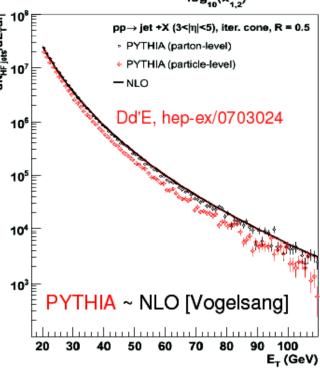
#### Forward Jets

Forward "soft" jets (E<sub>T</sub>~20-100 GeV):

$$p + p \rightarrow jet1 + jet2 + X$$
 (VBF-Higgs trigger)

Sensitive to partons with:  $x_2 \sim 10^{-4}$ 

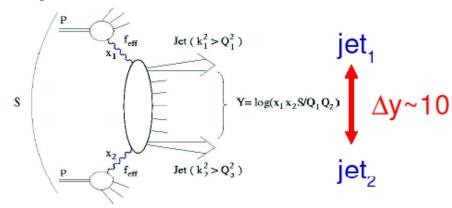
Jets in CASTOR (5.3  $< |\eta| < 6.6$ ):  $x_2 \sim 10^{-6}$ 



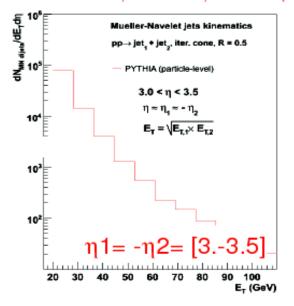

- PYTHIA 6.4. min-bias (hard&soft QCD)
- MC-level proof-of-principle only
- HF grid:  $\Delta \eta \times \Delta \phi = 0.175 \times 0.175$
- Iterative cone, R=0.5, E<sub>thresh</sub>=10 GeV, E<sub>seed</sub>=3 GeV
- Missing important corrections: underlying-evt.

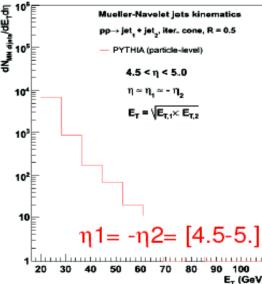
(PYTHIA CMS-Tune), hadronization (cluster vs. Lund)

Large yields. Low-E<sub>T</sub> uncertainties to be determined.







# Mueller Navelet Dijets

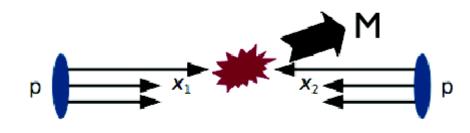

Mueller-Navelet dijets separated by large Δy:

very sensitive to non-DGLAP evolution

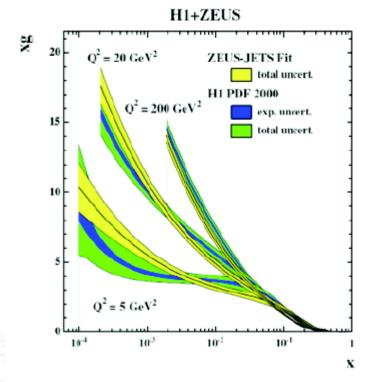


A.H.Mueller, H.Navelet, NPB282 (1987)727

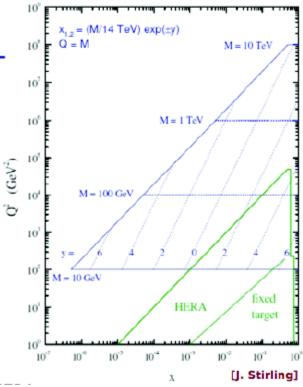








PYTHIA rates with M-N kin. cuts:  $\sim 10^4$  dijets [E $_{\rm T} \sim 30$  GeV] in  $\mathcal{L} \sim 1$  pb $^{-1}$  (low luminosity run): enough stats. for detailed studies of  $\Delta y$ -evolution.

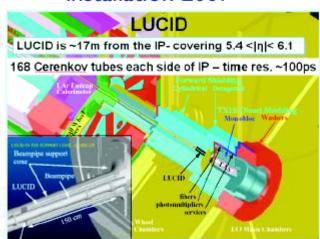
Dd'E, hep-ex/0703024


### Forward Physics & Low-x



- M goes forward if x<sub>1</sub> << x<sub>2</sub>
- M can be jets, DY, prompt-γ, b/c jets



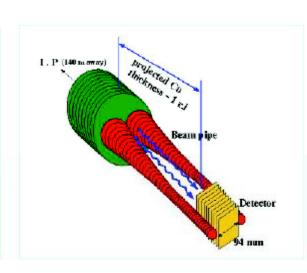

- The strong rise of gluons at lowx → "saturation"
- How does this extrapolate to the LHC?
- Can the LHC see saturation effects?

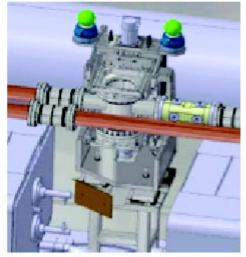


#### ATLAS Forward Detectors

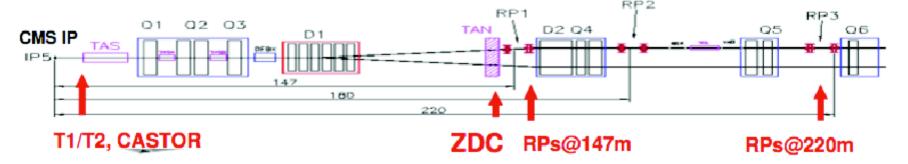
#### LUCID

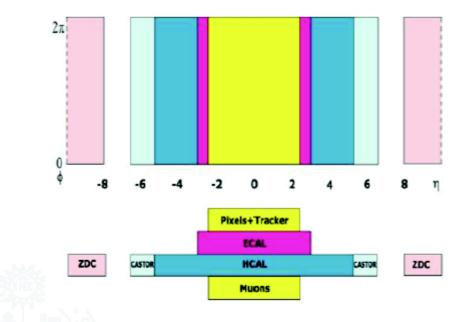
- C4F10 filled aluminized carbon tubes
- measures Cerenkov radiation of charged particles from interaction point
- $5.4 < |\eta| < 6.1$
- installation 2007





#### ATLAS-ZDC

- Tungsten/quartz
   Cerenkov calorimeter
- in TAN shielding
- EM (29X<sub>0</sub>) and HAD (4.6λ) sections
- $|\eta| > 8$  neutrals
- installation 2007/8


#### **ALFA**


- 2 Roman Pot stations at ±240m from IPI
- 10+10 planes of scintillating fibre
   1.5mm from beamline
- installation 2008/9





#### Forward Detectors at CMS IP :: Overview

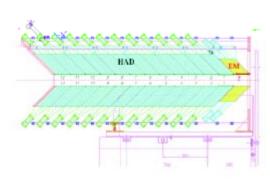




- CMS Central
- TOTEM-T2
- CMS-CASTOR
- ZDC
- TOTEM-RP

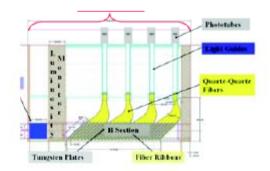
CMS+TOTEM have the largest acceptance ever at a hadron collider

#### Forward Detectors at CMS IP:: Detail


#### TOTEM-T2

- GEM tracking (Ar/CO<sub>2</sub>)
- 10 half-planes of 512 strips
- $\Delta \eta \times \Delta \varphi = 0.06 \times 0.05$
- $5.2 < |\eta| < 6.5$
- installation 2007




#### **CASTOR**

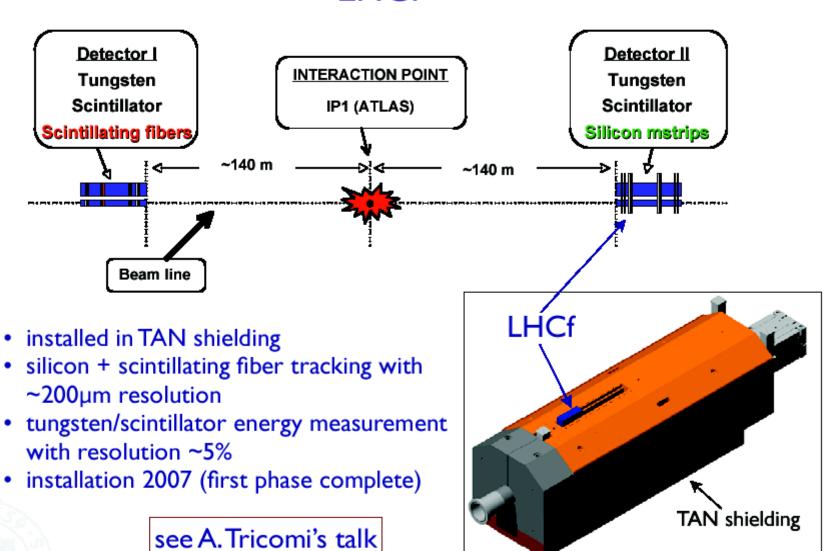
- Tungsten/quartz calorimeter
- EM (20X<sub>0</sub>) and HAD (9.5λ) sections
- $5.2 < |\eta| < 6.6$
- installation 2008/9



#### CMS-ZDC

- Tungsten/quartz
   Cerenkov calorimeter
- EM (19X<sub>0</sub>) and HAD (5.6λ) sections
- $|\eta| > 8$  neutrals
- installation 2007

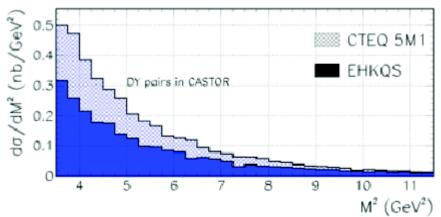


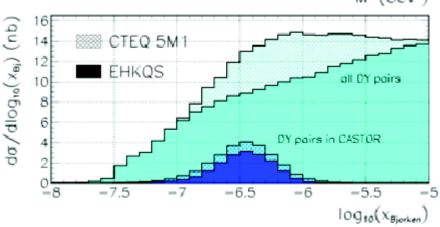

#### TOTEM-RP



- 2 Roman Pot stations at ±220m from IP5
- installation 2008/9
- 5+5 planes of 'edgeless' silicon, 1.5mm from beamline
- special beam optics required for some studies




#### **LHCf**




#### Forward Drell-Yan Pairs & Saturation

Rise of  $F_2$  tamed by saturation?

- CTEQ 5M1: standard, "non-saturated" pdf
- EHKQS: "saturated" pdf
  with nonlinear terms in
  gluon evolution
  [A. Dainese et al., HERA-LHC Workshop proc.]
  - → Saturation effects cause a 30% decrease in the DY cross section!

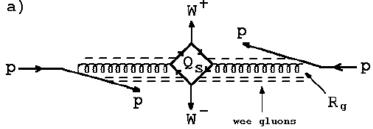




[CERN-LHCC 2006-039/G-124]



Event yield: ~2 million events/fb<sup>-1</sup> in CASTOR


#### **Anomalous WW Production?**

Alan White: theory of supercritical pomeron → reggeized gluon+many (infinite) wee gluons

 color sextet quarks required by asymptotic freedom, have strong colour charge, (at least) few 100 GeV constituent mass

- Sextet mesons → EWSB
- UDD neutron dark matter candidate
- Explain high energy cosmic rays, Knee?
- Color sextet quarks couple strongly to W and Z and to the pomeron

• Phenomenology: Anomalous production of WW when above threshold ie. At the LHC (with possibly some onset already detectable at the Tevatron  $^{\text{a}}$ )  $^{\text{w}^{+}}$ 



⇒Measure exclusive WW,ZZ cross sections in DPE at the LHC Expected cross section to be orders of magnitude larger than in SM

color

sextets

triplets