Low-x 2007
August 31

A scale, α^{\prime} and b in diffractive vector meson production

To read the diffractive peak size

Proton tomography with DVCS at HERA

A measurement of \boldsymbol{t}-dependence of DVCS cross section at different values of $\mathbf{Q}^{2}, \mathbf{W}$

No W-dependence of t-slope observed.
$\left\langle r_{T}\right\rangle=\sqrt{ }(2 b) \approx 0.65 \mathrm{fm}$ dominated by sea and gluons (low-x @ HERA)
$\left.<r_{T}>@ H E R A \ll r_{T}\right\rangle=0.8 \mathrm{fm}$ in real γ-proton scattering @ low energy

$d \sigma / d t\left(\gamma^{*}+p \rightarrow V+p\right) . t-$ dependence.

The slope of the t distribution decreases with Q 2 and levels off at $\mathrm{b} \sim 5-6 \mathrm{GeV}^{-2}$.
Universality of the b-data on the $Q^{2}+M^{2}$ scale

$\sigma\left(\gamma^{\star}+p \rightarrow V+p\right)$. Energy dependence.

process becomes hard as $\mathrm{Q}^{2}+\mathrm{M}^{2}$-scale becomes larger.

Cross section rises with energy.

$$
\sigma(\mathbf{W}) \sim \mathbf{W}^{\delta}
$$

the exponent is $\mathrm{Q}^{2}+\mathrm{M}^{2}$ scale dependent

$$
\delta=\delta_{0}+0.25 \ln \left(Q^{2}+M^{2}\right)
$$

Total $\gamma^{\star}+p \rightarrow V+p$ cross section as function of Q^{2}

The cross sections were scaled by factors, according to the quark charge content of the vector meson
$\rho: \omega: \varphi: J / \Psi=1: 9: 9 / 2: 9 / 8$

Gross feature:

Approximated with

$\sigma\left(Q^{2}\right) \propto 1 /\left(Q^{2}+M^{2}\right)^{n}$
Vector Mesons : $\quad \mathrm{n} \approx 2.5$

Details:

Fit to whole Q^{2} range gives bad $\chi^{2} /$ dof

$d \sigma / d t\left(\gamma^{\star}+p \rightarrow V+p\right)$. Interplay of t, Q^{2}

Take as a scale $Q^{2}+M^{2}-t$

$$
\frac{d \sigma}{d t} \propto \frac{\exp \left(b_{0} t\right)}{\left(Q^{2}+M_{V}^{2}-t\right)^{n}} \Rightarrow \frac{\exp \left(b_{0} t+\frac{n}{Q^{2}+M_{V}^{2}} \cdot t\right)}{\left(Q^{2}+M_{V}^{2}\right)^{n}}
$$

- at low t - values

For $\mathrm{n}=2.5$

$$
\mathrm{b}_{0}=5.5 \mathrm{GeV}^{-2}
$$

effective slope b :
$b=5.5+\frac{2.5}{Q^{2}+M_{V}^{2}} \quad \mathrm{GeV}^{-2}$
If so,
The slope $\mathrm{b} \approx 5.5 \mathrm{GeV}^{-2}$

$$
\mathrm{b}_{\gamma \mathrm{p}} \approx 1 / 2 \mathrm{~b}_{\mathrm{pp}} \quad \text { - one proton in } \gamma \mathrm{p} \text { and two protons in } \frac{\mathrm{Q}^{+}+}{}
$$

Now the exponential slope of the t distribution does not change with Q^{2} and M^{2}

$d \sigma / d t\left(\gamma^{*}+p \rightarrow V+p\right) . t-$ dependence.

$\frac{d \sigma}{d t} \propto F_{V}^{2} F_{p}^{2} \propto\left(1+a_{V} t\right)^{-n_{V}}\left(1+a_{p} t\right)^{-4} \Rightarrow\left\{\begin{array}{l}\exp (b \cdot t)-\text { at low } \mathrm{t}, \mathrm{b}=\mathrm{n}_{\vee} \mathrm{a}_{\mathrm{V}}+4 \mathrm{a}_{\mathrm{p}} \equiv \mathrm{b}_{\mathrm{V}}+\mathrm{b}_{\mathrm{p}} \\ 1 /|t|^{n}-\text { at large } \mathrm{t},\left(4<\mathrm{n}<\mathrm{n}_{\mathrm{V}}+4\right)\end{array}\right.$
$\begin{aligned} & \mathrm{t} \text { - dependence is defined } \\ & \text { by Form Factors }\left(\mathrm{F}_{\mathrm{V}} \mathrm{F}_{\mathrm{p}}\right)\end{aligned}$

Geometric picture:

$$
b=b_{p}+b_{V}
$$

Size of the scattered vector meson is getting smaller with $\mathrm{Q}^{2}+\mathrm{M}^{2}$ scale

$$
b_{V} \propto \frac{1}{Q_{2}+M_{V}^{2}}
$$

$$
t<-m_{p}^{2} \frac{\left(Q^{2}+M^{2}\right)^{2}}{W^{4}}
$$

Average t-value:

$$
\langle t\rangle<-\frac{1}{b}
$$

The scale change works in the right direction correcting the power-law $Q^{2}+M^{2}$ dependence.

$$
Q^{2}+M^{2}-\langle t\rangle\left[G e V^{2}\right]
$$

What is a scale for the energy dependence?

process becomes hard as scale becomes larger.

$$
\sigma(W) \sim W^{\delta}
$$

ρ^{0} photoproduction at high t - hard process?

$$
Q^{2}+M^{2} \rightarrow Q^{2}+M^{2}-t ?
$$

Effective Pomeron Trajectory $\gamma p \rightarrow V_{p}$

$$
\frac{d \sigma}{d t} \propto \exp \left(b_{0} t\right) \cdot W^{4 \alpha(t)-4} \quad \alpha(t)=\alpha(0)+\alpha^{\prime} \cdot t
$$

$$
\mathrm{\rho}^{0} \quad \begin{aligned}
& \alpha(0)=1.093 \pm 0.008 \\
& \alpha^{\prime}=0.116 \pm 0.05
\end{aligned}
$$

Elastic ρ^{0} photoproduction $\left(\mathrm{Q}^{2}+\mathrm{M}^{2}\right)=0.6 \mathrm{GeV}^{2}$

$$
\begin{aligned}
& \alpha(0)(\gamma p) \approx \alpha(0)(p p) \\
& \alpha^{\prime}(\gamma p) \approx 1 / 2 \alpha^{\prime}(p p)
\end{aligned}
$$

Two different soft Pomeron trajectories? α^{\prime} reflects the diffusion of partons in impact parameter, $b_{-} t$, plane during the evolution in rapidity $\sim \ln (s)$

$$
\frac{d \sigma}{d t} \propto \exp \left\{\left(b_{0}+4 \alpha^{\prime} \ln \left(W / W_{0}\right)\right) \cdot t\right\}
$$

Size of 2 proton system in pp scattering grows twice faster with s than a size of a single proton in $\gamma \mathrm{p}$-scattering?

Effective Pomeron Trajectories ZUUS $\rightarrow V p$

As the scale gets harder the intercept grows

The most precise measurements

The available data consistent with $\alpha^{\prime}(\gamma p)=\frac{1}{2} \alpha^{\prime}(p p)$

$\sigma\left(\gamma^{\star}+p \rightarrow V+p\right)$. Energy dependence.

Elastic Vm production c.s. rises fast $\sigma\left(\gamma^{*}+p \rightarrow V+p\right) \sim\left(\mathrm{F}_{2}\right)^{2} \sim \mathbf{W}^{\delta}$

Inclusive c.s. is defined by Structure Function
$\sigma\left(\gamma^{*}+p \rightarrow X\right) \sim\left(\mathrm{F}_{2}\right) \sim \mathbf{W}^{2 \lambda}$
$\Longleftrightarrow \mathrm{F}_{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right) \sim(1 / \mathrm{x})^{\lambda}$

$\delta\left(\mathbf{Q}^{2}+\mathbf{M}^{2}\right)=4 \square \lambda\left(\mathbf{Q}^{2}\right)$

Summary

- Attempting a more illustrative way to represent the measurements it is an advantage to consider the VM production and DVCS on a $Q^{2}+M^{2}-\dagger$ scale.

+2 comments on CEP at Tevatron

Central exclusive $\gamma \gamma$ production at CDF

Search for exclusive $\gamma \gamma$
$\mathrm{E}_{\mathrm{T}}(\gamma)>5 \mathrm{GeV}$ and $|\eta|<1$
$\checkmark 3$ candidate events found
$\checkmark 1$ (+2/-1) predicted from ExHuME MC
> estimated $\sim 1 \mathrm{bgd}$ event from $\pi^{0} \pi^{0}, \eta \eta$
If assume 3 events are DPE $\gamma \gamma$ Upper limit $\sigma<410$ fb

How to increase rates?

$$
\mathrm{pp} \rightarrow \mathrm{pp}+\gamma+\rho^{0}
$$

Similar to
VM / DVCS-production at HERA

$$
\sigma\left(\gamma \rho^{0}\right) \approx 10 \cdot \sigma(\gamma \gamma)
$$

Central Exclusive χ_{c} production at CDF

Use the decays $\chi_{c} \rightarrow J / \Psi(\mu \mu) \gamma$ within $|y|<0.6$ central detector 10 events $\mathrm{J} / \Psi+\gamma$ found in the CDF detector and nothing else OBSERVABLE

If assume all 10 events are $\chi_{c}\left(0^{++}\right)$
Upper limit of 49 ± 18 (stat) ± 39 (syst) pb
to be compared with prediction of 70 pb for $|\mathrm{y}|<0.6$ (Khoze, Martin, Ryskin, 2001; uncertainty factor 2 $\div 5$)

- small fraction of CDF statistics used in analysis
- needs for account of the $\chi_{c}\left(2^{++}\right)$state

Since $\sigma \sim \Gamma_{g g}, \Gamma\left(2^{++}\right) / \Gamma\left(0^{++}\right) \approx 0.13$ But $\operatorname{BR}\left(\chi \rightarrow J / \Psi_{Y}\right): \operatorname{BR}\left(2^{++}\right) / \mathrm{BR}\left(0^{++}\right) \approx 20$

One expects about equal contributions from 0++ and 2++ states

