Low-x 2007 August 31

A scale, α' and b in diffractive vector meson production

A.Rostovsev (ITEP, Moscow)

To read the diffractive peak size

Proton tomography with DVCS at HERA

A measurement of *t*-dependence of DVCS cross section at different values of Q², W

 $< r_T > = √$ (2b) ≈ 0.65 fm dominated by sea and gluons (low-x @ HERA) $< r_T >$ @HERA < $< r_T > = 0.8$ fm in real γ-proton scattering @ low energy

$d\sigma/dt(\gamma^*+p \rightarrow V+p)$. t- dependence.

The slope of the t distribution decreases with Q2 and levels off at $b \sim 5-6$ GeV⁻².

Universality of the b-data on the Q^2+M^2 scale

$\sigma(\gamma^* + p \rightarrow V + p)$. Energy dependence.

Q²+M² -scale becomes larger.

Photoproduction ($Q^2 \approx 0$)

Cross section rises with energy.

σ(W) ~ W^δ

the exponent is Q^2+M^2 scale dependent

 $\delta = \delta_0 + 0.25 \ln(\mathbf{Q}^2 + \mathbf{M}^2)$

Total $\gamma^* + p \rightarrow V + p$ cross section as function of Q^2

The cross sections were scaled by factors, according to the quark charge content of the vector meson

 $\rho: \omega: \varphi: J/\Psi = 1:9:9/2:9/8$

Gross feature:

Approximated with $\sigma(Q^2) \propto 1/(Q^2 + M^2)^n$

Vector Mesons : $n \approx 2.5$

Details:

Fit to whole Q² range gives bad χ^2/dof

• striking universality in vector meson production as scaled with Q^2+M^2 .

• The Q2 dependence of $\sigma(\gamma^* p \rightarrow \rho p)$ cannot be described by a simple propagator term.

$d\sigma/dt(\gamma^*+p \rightarrow V+p)$. Interplay of t, Q^2

Now the exponential slope of the t distribution does not change with Q^2 and M^2

$$t < -m_p^2 \frac{(Q^2 + M^2)^2}{W^4}$$

Average t-value:

$$\langle t \rangle < -\frac{1}{b}$$

The scale change works in the right direction correcting the power-law Q^2+M^2 dependence.

What is a scale for the energy dependence?

scale becomes larger.

σ(W) ~ W^δ

☆ ј/ψнι

OVCSH196-00

△ DVCSHIHERAIIep (prel.)

35 30 2025 40 $Q^2 + M^2 (GeV^2)$

 ρ^0 photoproduction at high t – hard process?

 $Q^2 + M^2 \rightarrow Q^2 + M^2 - †$?

Effective Pomeron Trajectory $\gamma p \rightarrow V p$

$$\frac{d\sigma}{dt} \propto \exp(b_0 t) \cdot W^{4\alpha(t)-4}$$

 $\alpha(t) = \alpha(0) + \alpha' \cdot t$

 ρ^0

 $\alpha(0) = 1.093 \pm 0.008$ $\alpha' = 0.116 \pm 0.05$

Elastic ρ^0 photoproduction (Q²+M²) = 0.6 GeV²

 $\alpha(0)(\gamma p) \approx \alpha(0)(pp)$

 $\alpha'(\gamma p) \approx \frac{1}{2} \alpha'(pp)$

Two different soft Pomeron trajectories? α' reflects the diffusion of partons in impact parameter, b_t, plane during the evolution in rapidity ~ln(s)

$$\frac{d\sigma}{dt} \propto \exp\{(b_0 + 4\alpha' \ln(W/W_0)) \cdot t\}$$

Size of 2 proton system in pp scattering grows twice faster with s than a size of a single proton in γ p-scattering?

Summary

• Attempting a more illustrative way to represent the measurements it is an advantage to consider the VM production and DVCS on a Q^2+M^2-t scale.

+ 2 comments on CEP at Tevatron

Central exclusive $\gamma\gamma$ production at CDF

Lumi = 532 *pb*⁻¹

Search for exclusive $\gamma\gamma$ $E_T(\gamma) > 5 \ GeV \ and \ |\eta| < 1$ \checkmark 3 candidate events found \checkmark 1 (+2/-1) predicted from ExHuME MC \triangleright estimated ~1 bgd event from $\pi^0 \pi^0$, $\eta \eta$

If assume 3 events are DPE $\gamma\gamma$ Upper limit $\sigma < 410~\textit{fb}$

How to increase rates?

$$pp \rightarrow pp+\gamma+\rho^0$$

Similar to VM / DVCS-production at HERA

 $\sigma(\gamma p^0) \approx 10 \cdot \sigma(\gamma \gamma)$

Central Exclusive χ_c production at CDF

Use the decays $\chi_c \rightarrow J/\Psi(\mu\mu)\gamma$ within |y|<0.6 central detector 10 events $J/\Psi+\gamma$ found in the CDF detector and nothing else OBSERVABLE

 \subseteq

If assume all 10 events are $\chi_{
m c}(0^{++})$

Upper limit of $49 \pm 18(stat) \pm 39(syst)$ pb

to be compared with prediction of **70 pb** for |y|<0.6 (Khoze, Martin, Ryskin, 2001; uncertainty factor 2÷5)

- small fraction of CDF statistics used in analysis
- needs for account of the $\chi_c(2^{++})$ state

Since
$$\sigma \sim \Gamma_{gg}$$
, $\Gamma(2^{++})/\Gamma(0^{++}) \approx 0.13$
But $BR(\chi \rightarrow J/\Psi_{\gamma}) : BR(2^{++})/BR(0^{++}) \approx 20$

One expects about equal contributions from 0++ and 2++ states