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The Big Picture

In diffractive DIS vector meson production one can study
distributions in

I photon’s virtuality Q2,

I total γ∗p energy W , W 2 À Q2,

I momentum transfer squared t,

I ... as well as their cross-distributions.

In addition, one has “discrete” degrees of freedom such as flavor
and polarization.
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The Big Picture (cont.)
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The Big Picture (cont.)
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The Big Picture (cont.)
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The Big Picture (cont.)
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The Big Picture (cont.)

Additional degree of freedom: polarization.

I SCHC: L → L, T → T .

I SCHC violation: L → T , T → L, T → −T .

I VM production is self-analyzing, one can extract all helicity
amplitudes form the angular distributions.

Multiple copies of the above Big Picture.
There are data on Q2-, W - and t-dependence of all the
spin-density matrix elements, rα

ij .
The most studied case is comparison of σL and σT .
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Q2-dependence

Q2-dependence

I Expectations: Q2 dependence can show soft-to-hard transition
in detail and can discriminate between models of gluon
density.

I Currently there are accurate data for ρ, φ and J/ψ production
for up to Q2 ∼ 100 GeV2. What can we learn from them?
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Q2-dependence (cont.)

J/ψ production

Many models or choices of gluon
density reproduce the shape of
σ(Q2),

but the overall normalization is off
by a factor up to 3.
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Is this mismatch of any significance when we try to understand the
QCD dynamics?
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Q2-dependence (cont.)

ρ production

Some models describe well the
soft end or the hard end of
the data.

The main discrepancy is again
the overall normalization
(which can differ below and
above Q2 ≈ 1 GeV2).
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Q2-dependence (cont.)

Literally it means that no single theoretical model is able to
describe the data well in the full Q2 range.

Do we see a serious problem here (for ρ? for J/ψ?) and if so how
should we proceed?

I Should we take a pQCD approach and incorporate soft
dynamics?

I Should we take a phenomenological model of soft dynamics
and incorporate pQCD evolution?

I Should we resort to an intrinsically non-perturbative
approach?

I Should we keep on improving all the models available?
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Q2-dependence (cont.)

Some further help from experimentalists should be useful:

I Global fits σ(Q2) ∝ (Q2 + M2)−n do not work anymore. Any
new indicative parameter?

I Instead of σ(Q2), plot σ(Q2) · (Q2 + m2
V )3, or if possible

σL(Q
2)

Q2
· (Q2 + m2

V )4 ,
σT (Q2)

m2
V

· (Q2 + m2
V )4 .

This would eliminate some “trivial” Q2-dependence and make
the dynamics (e.g. the gluon density) more evident.

I More data needed around Q2 ∼ 1 GeV2, where transition
takes place.
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σL vs. σT

pQCD predictions with no Fermi motion:

σL ∝ Q2

[
αS G (x , Q2)

]2

(Q2 + m2
V )4

, σT ∝ m2
V

[
αS G (x , Q2)

]2

(Q2 + m2
V )4

,

so that

R =
σL

σT
=

Q2

m2
V

, RLT ≡ σL

σT
· m2

V

Q2
= 1 .

Non-zero Fermi motion strongly reduces this number.
The reason: σT is more sensitive to larger momenta, i.e. to
short-distance properties of the qq̄ pair.
The problem: this reduction is very model dependent.
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σL vs. σT (cont.)

Several years ago it seemed that
R(Q2) would flatten out with Q2;
new data from H1 and ZEUS keep ris-
ing.

What does theory say?

I There are models that can
describe almost any shape of
R(Q2).

I What approach is more reliable?
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Progress in pQCD calculations

Amplitude in the collinear factorization:

A ∝
∫

dx dz Hg (x , ξ, t)K g (x , ξ, z)φ(z) ,

(also dependence on µR , µF ).

I Hard scattering kernel K g known to NLO.

I GPDs Hg usually constructed via double distributions from
conventional PDFs, also known to NLO.

I DA φ(z) is believed to be well approximated by its asymptotic
form.

Since σL dominates at asymptotically large Q2, one can estimate
VM production at NLO.
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Progress in pQCD calculations (cont.)

Results: (D.Ivanov, Szymanowsky, Krasnikov; Diehl, Kugler)

I At small xBj , NLO correction has opposite sign to the LO
term and dramatically reduces it; dσL/dt is suppressed by an
order of magnitude.

I At x ∼ 10−4, poor perturbative stability even at Q2 ∼ 50
GeV2.

I Strong sensitivity to the factorization scale µF .

I Corrections are large due to BFKL-type logs. First results of
high-energy resummation (D.Ivanov, Papa, Kirschner) are
encouraging.
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Progress in pQCD calculations (cont.)

Problems in application of the collinear factorization to
phenomenology:

I Power suppressed amplitudes are not really suppressed at
HERA:

σL/σT (Q2 = 20 GeV2) ≈ 4 , AT→T ≈ 0.5 · AL→L .

I End-point contributions for γ∗T are not suppressed → no
simple factorization formula as for γ∗L.

Modified perturbative approach applied to VM production by Kroll,

Goloskokov: Sudakov formfactor suppresses end-point contributions.
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Progress in pQCD calculations (cont.)

Two plots from DIS2007
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Kroll, Goloskokov: Sudakov factor

At small-x both corrections are huge.
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Progress in pQCD calculations (cont.)

I Since both corrections are large, should they both be taken
into account? How? Is further suppression expected?

I Do these results change the status of LO calculations in other
microscopic approaches (BFKL, color dipole, kt-factorization)?
Or should we think of calculating NLO corrections there?

I A provocative question: “Is there any pQCD calculation of
σL(Q

2) at HERA in which we really (i.e. quantitatively)
believe?”

It appears that until these issues are settled, theoretical
understanding of σL/σT (Q2) will be shaky.
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σL/σT as function of W and t

R = σL/σT has been measured as a function of W and of t.

R(W ) ∝ W δL−δT , R(t) ∝ e−(BL−BT )|t| .

Expectations within color dipole formalism: VM production
amplitude has a broad peak at scanning radius

rS ≈ 6/Q , Q
2

= 〈z(1− z)Q2 + m2
q〉 .

Typical Q
2
T < Q

2
L, which makes σT somewhat softer than σL. One

expects δL > δT and BL < BT .
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σL/σT as function of W and t (cont.)

Data show R ≈ const against W and t. Is this a puzzle?

Calculations do confirm that
σL/σT should be slightly rising
(roughly, δL − δT ≈ 0.1).

It is difficult to say whether it dis-
agrees with data.
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Cone shrinkage and effective Pomeron trajectory

Joint W - and t-distributions

I parametrize W -growth of differential cross section:
dσ/dt ∝ W δ; plot δ vs. t:

δ = 4[αeff(t)− 1] , αeff(t) = αeff(0)− α′eff |t|

Effective Pomeron trajectory.

I parametrize t-dependence via dσ/dt ∝ exp(−B|t|); plot B vs.
lnW :

B = B0 + 4 α′eff ln(W /W0) .

Shrinkage of diffractive cone.

I Locally, α′eff is the same in both methods; its extraction from
data can differ.
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Cone shrinkage and effective Pomeron trajectory (cont.)

Both αeff(t) and B(W ) are measured experimentally. Values of
α′eff extracted from both methods agree within errorbars.

Example: αeff (t) measured in J/ψ production:
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Cone shrinkage and effective Pomeron trajectory (cont.)

New ZEUS ρ data: α′eff vs. Q2,
glimpse at triple distribution.

α′eff(ρ) ∼ 0.15GeV−2, constant vs Q2

≈ α′eff(J/ψ).

What can one learn from α′eff being
≈ Q2-, m2

V -independent?

No triple distribution?
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Cone shrinkage and effective Pomeron trajectory (cont.)

How should we interpret αeff (0) vs. Q2?

I In the single Regge pole Ansatz, αeff(0) is Q2-independent
and coincides with the Regge pole input.

I But the Pomeron is a more complex object. In QCD-inspired
factorized models, the Pomeron is modelled by partonic
distributions, which do not depend explicitly on Q2.
αeff(t) arises via an interplay of gluon distribution and the
upper quark loop dynamics.

I How exactly is αeff(t) related to input parameters of the
Pomeron(s)? How model-dependent is this relation?

I Is the term “effective Pomeron trajectory” still useful? Or is it
misleading?
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Excited mesons

Diffractively produced meson must have P = C = −1.

I Ground state vector mesons (L = 0, nr = 0): ρ, ω, φ, J/ψ,Υ.

I Radially excited VM (L = 0, nr > 0): ≈ ρ′(1450), . . .

I Orbitally excited VM (L = 2, nr = 0): ≈ ρ′′(1700), . . .

I High-spin mesons, e.g. spin-3 mesons with L = 2 such as
ρ3(1690).

Ground state mesons: lots of accurate data and multitude of
various models;
Excited states: very few data and calculations.
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Excited mesons (cont.)

Example: excitation in the ρ system

I Martin, Ryskin, Teubner (1997): qq̄ production and projection
onto spin-orbital states at the level of differential cross section;

I Kulzinger, Dosch, Pirner (1998): ρ′ and ρ′′ as mixed states of
2S-state and hybrid.

I Caporale, I.P.I. (2005): ρ′ as 2S- and ρ′′ as D-wave states at
the level of amplitude.

I Different approaches → very different predictions! Excited
states can open yet another dimension to the study of
exclusive diffraction.

Several experiments have collected 4π or 6π (photo)production
events. Can we expect experimental results on excited VM
production?
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Conclusions

I Despite recent progress, the rigorous theory has not yet
matured enough to provide accurate predictions for HERA.

I There is a vast spectrum of (semi-)phenomenological models,
which describe well some experimental data. There are very
few experimental quantities that theory or phenomenology
really predicts. For most observables, various models do not
agree. How should we proceed in this situation?

I As data become more accurate, is there any new observable
emerging to look at? When constraining models by analyzing
the data, what should we focus on?


