Low-x physics in AdS/CFT

Yoshitaka Hatta (Saclay)

with E. lancu and A. Mueller

Motivations

- ☐ It's interesting !...though it may have little (if any) relevance to real experiments...
- □ Longstanding problems in the Regge regime of QCD (Froissart's theorem, soft vs. hard Pomerons, etc.) Theorists desperate for new ideas and insights from ``QCD—like" theories.
- □ Possible application to the ``sQGP" (Finite—T)

M

N=4 Super Yang-Mills

$$L = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + i \bar{\psi}^i_a \bar{\sigma}^{\mu} D_{\mu} \psi^i_a + \frac{1}{2} \sum_{1 \le i < j \le 4} (D_{\mu} \phi^a_{ij})^{\dagger} D^{\mu} \phi^a_{ij}$$

- SU(Nc) local gauge symmetry
- Maximally supersymmetric gauge theory in D=4.
- Conformal symmetry SO(4,2) $\beta = 0$ The t`Hooft coupling $\lambda = g_{YM}^2 N_C$ doesn't run.
- Global SU(4) R-symmetry

Type IIB superstring

- Consistent superstring theory in D=10
- 256 massless states (supergravity modes)
- Admits the black brane solution which is asymptotically $AdS \times S^5$

$$ds^2=g_{\mu\nu}dX^\mu dX^\nu=\frac{r^2}{R^2}(-dt^2+dx_1^2+dx_2^2+dx_3^2)+\frac{R^2}{r^2}dr^2+R^2d\Omega_5^2$$
 Our universe AdS `radius' coordinate

The correspondence

Maldacena, '97

- Take the limits $N_C \to \infty$ and $\lambda = g_{YM}^2 N_C \to \infty$
- N=4 SYM at strong coupling is dual to weak coupling type IIB on AdS
- Spectrums of the two theories match

Application to DIS

Polchinski, Strassler, `02

R-charge current excites metric fluctuations in the bulk, which then scatters off a dilaton (`glueball') via the super Virasoro-Shapiro amplitude.

The string S-matrix

Flat space Virasoro-Shapiro

$$A(s,t) \propto g_s^2 \frac{1}{t} s^{2+t}$$

t-channel graviton pole

AdS case

$$t \to t + \nabla_r^2$$

Laplacian in the 5th direction causes the shift of the intercept as well as diffusion. Gravitons become massive

$$j = 2 \rightarrow 2 - 2/\sqrt{\lambda}$$
 \leftarrow $c.f. BFKL$ $j = 1 + 4 \ln 2 \cdot \overline{\alpha}_s$

Kotikov, Lipatov, Onishchenko, Velizhanin `04 Brower, Polchinski, Strassler, Tan `06

Beyond the single Pomeron approximation

- Graviton dominance high energy behavior even worse than in QCD.
- No problem as long as

$$g_s^2 \propto \frac{1}{N_c^2} \to 0$$

Keep Nc finite and study the onset of unitarity corrections.

Multiple Pomeron exchange ← → String loop diagrams

Saturation saddle point at weak coupling

Amplitudes factorize in the kt-space

$$\int d\gamma \exp\{\chi(\gamma) Y - (1-\gamma) \ln k_t^2 / \Lambda^2\}$$

BFKL saddle point

$$j = 1 + \chi(1/2) = 1 + 4 \ln 2 \cdot \overline{\alpha}_s$$

Saturation saddle point determined from

$$\chi'(\gamma) = -\frac{\chi(\gamma)}{1-\gamma}$$

$$\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$$

`Saturation" saddle point at strong coupling

Amplitudes factorize in the r-space

Anomalous dimension in N=4 SYM

The characteristic function extremely flat "Saturation" anomalous dimension huge

$$\gamma_s = -\frac{\lambda^{1/4}}{\sqrt{2}}$$

 \rightarrow Anomalous dimension of the twist—two operator ${
m Tr}[F_{\mu}^{+}(D^{+})^{j-2}F^{+\mu}]$

$$\gamma(j)\approx -\sqrt{\frac{j}{2}}\,\lambda^{\frac{1}{4}} \qquad \qquad 1\ll j\ll \sqrt{\lambda}.$$
 Gubser, Klebanov, Polyakov, `02
$$\gamma(j)\approx -\frac{\sqrt{\lambda}}{2\pi}\ln\frac{j}{\sqrt{\lambda}} \qquad \qquad j\gg \sqrt{\lambda}$$

"Diffusion approximation" $j \propto \gamma^2$ is related to the Regge behavior $j \propto m^2$ of string excited states \rightarrow Valid in a broad region, unlike BFKL!

The real part strikes back

At large Q^2 massless gravitons reemerge.

The real part reaches the unitarity limit first.

Phase diagram at weak coupling

$$\frac{1}{\overline{\alpha}_s} \ln \frac{1}{\alpha_s^2}$$

Single Pomeron

$$\rho = \ln Q^2 / \Lambda^2$$

Phase diagram at strong coupling

Photon virtuality as an impact parameter

Compare our result with

Amati, Ciafaloni, Veneziano `87 (working in 10D string theory!)

Conclusions

- Regge regime in AdS/CFT largely unexplored.
- Some similarities, striking differences w.r.t. weak coupling QCD.
- Amati, Ciafaloni, Veneziano scenario realized in gauge theory
- Strong gravity and black hole creation
 - → Reminiscent of the nonlinear effects in QCD in the saturation regime