A Baryonic Impact Factor

J.Bartels

II.Inst.f.Theor.Physik, Univ.Hamburg

Helsinki, August 2007

- Introduction
- The baryon wave function
- Decomposition of the Impact Factor
- Evolution
- Conclusions

Collaboration with Leszek Motyka

Introduction

Very popular: color dipole picture (large- N_c), much used in DIS:

Question: how much of the dipole picture can be used in hadron-hadron (hadron-nucleus) scattering? Obviously:

- proton is 3 quark state not a dipole
- In large- N_c : proton would be N_c -quark state

About ten years ago (Praszalowicz, Rostworowski)): Problem with color dipole picture for the proton, 'Each step in rapidity evolution creates new color state' Two steps: baryon impact factor and evolution.

How to address: t-channel approach, BFKL approximation.

Impact factor:

Gluon emission \rightarrow evolution:

In the photon case one finds a remarkable simplification: fan-like structure

Contains elastic unitarity: reggeization, bootstrap.

Large N_c : BK equation.

In the following: apply the same analysis to a baryonic impact factor.

The baryon wave function

A few technicalities: start from 4-Fermi operator (loffe):

$$\epsilon_{abc}u(x)^{aT}C\gamma^{\mu}u(x)^{b}\ w(x)\gamma_{5}\gamma_{\mu}d(x)^{c}$$

More realistic: include nonperturbative wave function.

Use helicity basis, infinite momentum frame, eikonal approximation:

Square, sum over helicities, compute color traces, sum over all possibilities of attaching gluons:

Results:

decompose the impact factor into irreducible (under evolution) pieces.

Decomposition of the impact factor

A.Two Gluons (C even): 'normal' dipole structure. The pair (23):

Dipole structure, but lines 2 and 3 are in antitriplet.

'Antitriplet dipole'

Contains diquark configuration, depends upon dynamics of wave function.

$$\left(D_{20}^{23}(k_1,k_2) + D_{20}^{13}(k_1,k_2) + D_{20}^{12}(k_1,k_2)\right)\delta_{ab}$$

Satisfies Ward identities.

B. Three gluons (C even): reggeization of the 2 gluon system

$$\left(D_{20}^{23}(k_1+k_2,k_3)+D_{20}^{23}(k_1+k_3,k_2)+D_{20}^{23}(k_1,k_2+k_3)\right)f_{abc}+D_{20}^{12}+D_{20}^{13}$$

Reggeization + bootstrap, similar to photon impact factor.

Three gluons (C odd): Odderon (C.Ewerz)

New function: $E_{30}(k_1, k_2, k_3)$. Satisfies Ward identities. Nonabelian charge configuration.

C. Four gluons (C even): different pieces

- reggeization of the 2 gluon system
- new configuration

$$D_{20}^{23}(k_1+k_2,k_3+k_4):$$

$$D_{20}^{23}(k_1+k_2+k_3,k_4):$$

The new configuration: C even, even signature

$$E_{30}(k_1 + k_2, k_3, k_4) \left(d_{a_1 a_2 c} d_{a_1 a_2 c} - \frac{1}{3} \delta_{a_1 a_2} \delta_{a_3 a_4} \right)$$

Sum over all permutations satisfies Ward identities. Needs all 3 quarks.

Four gluons (C odd): reggeization of the odderon (C.Ewerz)

$$E_{30}(k_1+k_2,k_3,k_4)d_{a_1a_2c}f_{a_1a_2c}$$

Evolution, gluon radiation

The decomposition of the impact factor is preserved under evolution.

Dipole-like term (color anti-triplet):

Looks like photon impact factor, fan structure... (BK equation?)

Contains the diquark configuration, but it also allows for spacial separation.

The new piece:

a new vertex appears (good properties, e.g. Möbius invariant):

s-channel picture: radiation from all three quarks, new evolution kernel.

In addition:

C-odd, Odderon: both the BLV and the WJ solutions couple.

Conclusions

Differences and similarities between photon (=color dipole) impact factor and baryonic impact factor:

- Baryon contains 'antitriplet' dipole (diquark).
 From this dipole radiation as in the photon case.
- In addition: in the Pomeron channel odderon type evolution, with new kernel.
- in LO: no direct two-Pomeron coupling to the baryon (same as in the photon case)
- reggeization, bootstrap play an important role
- odderon-state mixes with Pomeron states, importance of d-reggeon
- QCD reggeon field theory is more than a theory of interacting BFKL Pomerons

Think about phenomenological applications.