

Track Trigger Software Overview

Track Trigger Integration WG 22.10.2012

Nicola Pozzobon Università degli Studi di Padova INFN – Sezione di Padova

• Why simulation tools

- Status of available simulation tools (some of them)
- Pending issues with simulation tools

Check also the TT Simulation tutorial available from the 24th July 2012 Tracker DPG TT WG

What are sim tools meant for

- Evaluation of a tracker itself
- Evaluation of a tracker within CMS
- Evaluation of track trigger algorithms
- Comparison of full simulation with predictions from other sources
- Evaluation of data-flow constraints
- Feedback to/from HW design

What are the available tools?

- tkLayout standalone tool for basic performance estimate with parametric models
- Verilog simulations of track trigger architecture
- CMS FullSim with custom tracker geometry for everything else

Why a G4 simulation in CMSSW?

Despite being slow and non-optimal when rough and fast answers are needed

- It can satisfy all described needs
- It can validate results from independent modeling and evaluation
- It allows the simulation and evaluation of nasty effects (secondaries, loopers, etc ...)
- It allows the combination of tracker and other subsystems

CMSSW Track Trigger: where?

https://twiki.cern.ch/twiki/bin/viewauth/CMS/ SLHCTrackerTriggerSWTools

- SLHCUpgradeSimulations/Geometry
- SLHCUpgradeSimulations/Utilities
- SLHCUpgradeSimulations/L1TrackTrigger
- SimDataFormats/SLHC

Avoid misuse of vocabulary!

- Both sensors in a Stack belong to the same Layer
- Stubs in consecutive Layers can be paired into Tracklets
- One cannot name a Stub or a Cluster or any other L1 TT object without specifying HOW it is built
- Check the TWiki!

CMSSW Track Trigger modules

SLHCUpgradeSimulations/Geometry:

- Geometry files and basic plugins for topology handling SLHCUpgradeSimulations/Utilities
- Tools to call paired sensors "stacked modules" SLHCUpgradeSimulations/L1TrackTrigger
- Algorithms to build Clusters, Stubs, Tracklets, Tracks SimDataFormats/SLHC
- Data formats describing Clusters, Stubs, Tracklets, Tracks → this is where the "vocabulary" comes from!

Other (TT-modified) modules

The general idea is not to mess up the existing modules:

- Minimize the work, use what is already available
- Do not affect what is currently used in CMSSW for validation, data-taking, data analysis, etc ...

DataFormats/SiPixelDetId

- Re-assignment of empty bits in PXB and PXF DetId Geometry/TrackerNumberingBuilder
- Must follow new features of DataFormats/SiPixelDetId
 Geometry/TrackerCommonData
- New positioning algorithms to use tkLayout XML

Tracker geometry

- It includes Phase 1 Pixels as in CMSSW_4_2_8_SLHCtk3
- TT was born around barrel-like pixelated layers of trigger modules complementing a standard strip tracker
- The LongBarrel concept layout came then together with a hierarchic L1 track finding idea being developed at FNAL
- Frozen: from 2_2_6 to 4_2_8_SLHCTk3
- This was a limit for TT

Geometry-induced limitations

- SLHCUpgradeSimulations/Utilities could only call pairs of PXB sensors "stacks" → FIXED
- SLHCUpgradeSimulations/L1TrackTrigger could only handle signals from PXB-PXB "stacks" → FIXED
- Ambiguous sorting of parent/child structures, with non predictable indexing of modules → FIXED
- Difficult to address inner/outer sensor → FIXED (tricky)
- Geometry XML files could not be easily configurable
- There was a request for Strip modules, mixed modules, Endcap modules
- TT software could not fit those requests

A new geometry is difficult to get

- TT needs two different containers to describe the tracker: TrackerGeometry and StackedTrackerGeometry
- StackedTrackerGeometry contains objects which are safely used and *only pointed* by TrackerGeometry
- Difficult part: build TrackerGeometry from XML
- tkLayout was designed to export the geometry into files that cope with CMSSW requirements
- XML format, 7 files for definition of volumes, module positioning, material assignment and sensor topology

tkLayout and CMS FullSim

- tkLayout tool XML exportation is based on templates
- Not touched since long, long time ago ... stuck to old constraints and templates
- Enormous manual editing of output XML files was needed
- There was a general requirement of flexible TT tools and of testing any layout, so debugging started
- Also the management supported the fact that new geometry files should be provided by tkLayout
- Generic geometry \rightarrow flexible TT tools

tkLayout debugging

- Volume boundaries
- Module boundaries
- Sensor spacing
- Module and sensor orientation
- Module 2D and 3D overlap

- Custom version of few CMSSW classes out of TT specific modules
- Particularly difficult for Endcaps

Current status of tkLayout/CMSSW

• (Almost) completed, few more bugs to be fixed

PixelDigi Barrel y vs. x

PixelDigi ρ vs. z

A new LongBarrel from tkLayout

- All the "FIXED" in the limitations list were born in trying to make a new tkLayout-based LongBarrel work, test version released in 4_2_8_SLHCtk3 and available from CVS
- Basic guideline: keep changes to CMSSW modules an classes to the least necessary amount

LongBarrel from tkLayout features

- Old LongBarrel: 0.098 mm x 1 mm pixels, 1 mm sensor separation, 0.100 mm thick sensors, main stack layers at 32-36 cm, 48-52 cm and 98.5-102.5 cm
- New LongBarrel: 0.094 mm x 1.4 mm pixels, 1.2 mm sensor separation, 0.100 mm thick sensors, main stack layers at 32-36 cm, 48-52 cm and 98.4-102.4 cm (tolerance: few tens of mm)
- We have also **LongBarrelSwapped**, with second main double stack at 64.2-68.2 cm

Geometry

SLHCUpgradeSimulations/Geometry/data/LongBarrel/

- 6 XML files needed to describe the geometry (7, if different pixfwd.xml is needed)
- the PixelSkimmedGeometry.txt file containing a table of DetId, Rows, Columns, ROCs
- SLHCUpgradeSimulations/Geometry/test/
- dumpGeom_cfg.py, which is used to create the Fireworks geometry file
- writeFile_*_cfg.py, which writes the PixelSkimmedGeometry.txt file

Geometry

SLHCUpgradeSimulations/Geometry/python/

- Digi_*_cff.py, needed by the Digitizer
- LongBarrelSwapped_cmsSimIdealGeometryXML_cff.py LongBarrelSwapped_cmsSimIdealGeometryXML_cfi.py, to load the Geometry, including all subsystems
- SLHCUpgradeSimulations/L1TrackTrigger/test/
- PrintStackInfo_*_cfg.py to print a summary of the tracker part made of trigger modules

Data formats and Producers

Class name: L1TkStub

(Example with Stubs)

Class implementation:

- SimDataFormats/SLHC/interface/L1TkStub.h
- SimDataFormats/SLHC/src/L1TkStub.cc
- SimDataFormats/SLHC/src/classes.h and classes_def.xml

NOTE: latest CVS tag is common with L1DTTrigger and L1CaloTrigger data formats, in order to allow using L1TrackTrigger at the same time

Data formats and Producers

The Builder is an is an EDProducer which defines an input/ output scheme and the interface to data formats, regardless of the particular algorithm

• SLHCUpgradeSimulations/L1TrackTrigger/interface/ L1TkStubBuilder.h

The Builder loads a specific algorithm which is also an EDProducer, based on a specific "reference" class

- SLHCUpgradeSimulations/L1TrackTrigger/interface/ and src/HitMatchingAlgorithm.h and HitMatchingAlgorithmRecord.h,
- SLHCUpgradeSimulations/L1TrackTrigger/src/ HitMatchingAlgorithm.cc and ES_HitMatchingAlgorithm.cc

Data formats and Producers

Some Algorithms are already available, but custom ones can be used, provided they respect all the constraints

• SLHCUpgradeSimulations/L1TrackingTrigger/interface/ HitMatchingAlgorithm_globalgeometry.h and many others

Specific parameters are contained in dedicated cfi files and set via edm::InputTag and ESPrefer

- SLHCUpgradeSimulations/L1TrackingTrigger/python/ Stub_cfi.py
- SLHCUpgradeSimulations/L1TrackingTrigger/python/ HitMatchingAlgorithmRegister_cfi.py

If you want your algorithms to be included in the official CMSSW packages, please contact me

DN-2012-003

- Algorithms are described in detail therein
- Reference Cluster algorithm: "2d"
 - Clusters within sensor, across ROCs
 - Max size is 2x2
 - Duplicates and fakes still to be understood: major performance problem by now

DN-2012-003

- Reference Stub algorithm: "pixelray"
 - Stubs within stacked module
 - Variation to "globalgeometry" one (*pictures*), using only global coordinates and trigonometry
 - $\Delta \phi = \Delta R \times cB \times 0.5E 9/p_T [cm, s, GeV/c, T]$
 - I am working also on another algorithm, making use of local coordinates
 - News ASAP

rejected outer hit

DN-2012-003

- Only one Tracklet algorithm: "globalgeometry"
 - Tracklets: within double stack
 - same approach as Clusters → Stubs, only global coordinates, Stubs are matched to each other instead of Clusters
 - $p_T = cB \times 0.5E 9 \times ((R^2 + r^2 2Rr \times cos(\Delta \phi)))^{1/2} / sin(\Delta \phi)$ [cm, s, GeV/c, T]
 - $p_z = p_T \times (Z z) / \Delta R \rightarrow hence \eta$
 - $z_{VTX} = Z R \times (Z z) / \Delta R \rightarrow LINEAR APPROXIMATION$ OF TRAJECTORY!

Tracking at L1

- One ideal approach in CVS code
- One recent tracking algorithm by Anders and Emmanuele, available as a standalone tool running on ASCII files with Stub information from FullSim
- Currently being interfaced to L1TrackTrigger module and data formats to be embedded in the FullSim workflow

Main pending problems

- Duplicate and fake Clusters
 - 3 pixel width was more likely from old simulations
- Duplicate and fake Stubs
 - With pixelated sensors, forward "broadside" clusters
- Stub rates with realistic MB
 - Old LongBarrel had very simplified services
- Threshold tuning
- Simplified local coordinate-based algorithm (Nicola P.)
- Complete embedding of Cornell L1 Track finding in CMSSW (Emmanuele S.)
- Have a single release for Phase 1 (Pixel + HCAL), where to plug Phase 2 tracker (Eric B.)
- Have a single tag for all L1*Trigger data formats
 - L1Tk, L1DT, L1Calo ok! *L1CSC missing...*

• Stay tuned: HN and TWiki

- First validation plots of "local" stub algorithm to be released soon
- These weeks, many updates are being committed to CVS, so there might be a bit of consecutive alerts sent to HN
- Keep track of what is happening in TT WG (Tk DPG)