NUMERICAL RESULTS

NNLO corrections to jet production at hadron colliders

João Pires

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Zurich Phenomenology Workshop 2013: Particle Physics in the LHC era January 9, 2013

- in collaboration with A. Gehrmann-De Ridder, T. Gehrmann, N.Glover

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

OUTLINE

- Motivation for jet cross sections at NNLO
- Features of the NNLO calculation
- Antenna subtraction method
 - ► the double-virtual contribution
- Numerical results
- Conclusions and future work

MOTIVATION NNLO INGREDIENTS •000 000 ANTENNA SUBTRACTION

NUMERICAL RESULTS

INCLUSIVE JET AND DIJET CROSS SECTIONS

- measurements of single jet inclusive jet and dijet observables at the LHC as a function of the jet p_T and rapidity and dijet invariant mass
- probes the basic QCD parton-parton scattering

- ► residual uncertainty due to scale choice at NNLO expected at ≈ few percent level
- ▶ jet energy scale uncertainty has been determined to less than 5% for central jets → expect steady improvement with higher statistics
- ► theoretical prediction with the same precision as the experimental data → need for pQCD predictions at NNLO accuracy

NUMERICAL RESULTS 00000000

INCLUSIVE JET AND DIJET CROSS SECTIONS

- data can be used to constrain parton distribution functions
- size of NNLO correction important for precise determination of PDF's
- inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross sections

MOTIVATION	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	000	000	0000000

Measurements of α_s at hadron colliders

CDF run I data gives

 $\alpha_s(M_Z) = 0.1178 \pm 0.0001(\text{stat})^{+0.0081}_{-0.0095}(\text{sys}) \stackrel{+0.0071}{_{-0.0047}}(\text{scale}) \pm 0.0059(\text{pdf})$

• α_s determination from hadronic jet observables limited by the unknown higher order corrections

Sac

Motivation	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	•00	000	0000000

NNLO INGREDIENTS

QCD jet cross section perturbative expansion at hadron colliders

$$\mathrm{d}\sigma = \sum_{i,j} \int \left[\mathrm{d}\hat{\sigma}_{ij}^{LO} + \left(\frac{\alpha_s}{2\pi}\right) \mathrm{d}\hat{\sigma}_{ij}^{NLO} + \left(\frac{\alpha_s}{2\pi}\right)^2 \mathrm{d}\hat{\sigma}_{ij}^{NNLO} + \mathcal{O}(\alpha_s^3) \right] f_i(x_1) f_j(x_2) dx_1 dx_2$$

► NNLO *m*-jet corrections contains three contributions:

$$\begin{aligned} \mathrm{d}\hat{\sigma}_{NNLO} \sim & \int \left[\langle \mathcal{M}^{(0)} | \mathcal{M}^{(0)} \rangle \right]_{m+4} \mathrm{d}\Phi_{m+2} J_m^{(m+2)} \\ &+ \int \left[\langle \mathcal{M}^{(0)} | \mathcal{M}^{(1)} \rangle + \langle \mathcal{M}^{(1)} | \mathcal{M}^{(0)} \rangle \right]_{m+3} \mathrm{d}\Phi_{m+1} J_m^{(m+1)} \\ &+ \int \left[\langle \mathcal{M}^{(1)} | \mathcal{M}^{(1)} \rangle + \langle \mathcal{M}^{(0)} | \mathcal{M}^{(2)} \rangle + \langle \mathcal{M}^{(2)} | \mathcal{M}^{(0)} \rangle \right]_{m+2} \mathrm{d}\Phi_m J_m^{(m)} \end{aligned}$$

- ► [⟨*M*⁽ⁱ⁾ |*M*^(j)⟩]_M is the interference of *M*-particle *i*-loop and *j*-loop amplitudes
- ► NNLO PDF's [MSTW, ABKM, NNPDF]
- ▶ NNLO DGLAP evolution [Moch, Vermaseren, Vogt '04]

- tree level 2 → 4 matrix elements [Berends, Giele '87], [Mangano, Parke, Xu '87], [Britto, Cachazo, Feng '06]
- ► 1-loop 2 → 3 matrix elements [Bern, Dixon, Kosower '93]
- ► 2-loop 2 → 2 matrix elements [Anastasiou, Glover, Oleari, Tejeda-Yeomans '01], [Bern, De Freitas, Dixon '02]

Motivation	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	000	000	0000000

$$\mathrm{d}\hat{\sigma}_{\textit{NNLO}} \hspace{2mm} = \hspace{2mm} \int_{\mathrm{d}\Phi_4} \mathrm{d}\hat{\sigma}_{\textit{NNLO}}^{\textit{RR}} + \int_{\mathrm{d}\Phi_3} \mathrm{d}\hat{\sigma}_{\textit{NNLO}}^{\textit{RV}} + \int_{\mathrm{d}\Phi_2} \mathrm{d}\hat{\sigma}_{\textit{NNLO}}^{\textit{VV}}$$

$$\begin{split} \mathrm{d}\hat{\sigma}_{NNLO}^{RR} &= \mathcal{N} \, \mathrm{d}\Phi_4(p_3, p_4, p_5, p_6; p_1, p_2) |\mathcal{M}_{gg \to gggg}^{(0)}|^2 \, J_2^{(4)}(p_3, p_4, p_5, p_6) \\ \mathrm{d}\hat{\sigma}_{NNLO}^{RV} &= \mathcal{N} \, \mathrm{d}\Phi_3(p_3, p_4, p_5; p_1, p_2) \\ & \left(\mathcal{M}_{gg \to ggg}^{(0)^*} \mathcal{M}_{gg \to ggg}^{(1)} + \mathcal{M}_{gg \to ggg}^{(0)} \mathcal{M}_{gg \to ggg}^{(1)^*}\right) \, J_2^{(3)}(p_3, p_4, p_5) \\ \mathrm{d}\hat{\sigma}_{NNLO}^{VV} &= \mathcal{N} \, \mathrm{d}\Phi_2(p_3, p_4; p_1, p_2) \\ & \left(\mathcal{M}_{gg \to ggg}^{(2)^*} \mathcal{M}_{gg \to ggg}^{(0)} + \mathcal{M}_{gg \to ggg}^{(0)} \mathcal{M}_{gg \to ggg}^{(2)^*} + |\mathcal{M}_{gg \to ggg}^{(1)}|^2\right) \, J_2^{(2)}(p_3, p_4) \end{split}$$

- explicit infrared poles from loop integrations
- implicit poles in phase space regions for single and double unresolved gluon emission
- procedure to extract the infrared singularities and assemble all the parts

IVATION NNLO INGREDIENTS 0 000

NNLO ANTENNA SUBTRACTION

$$\begin{split} \mathrm{d}\hat{\sigma}_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{NNLO}^{S} \right) \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^{T} \right) \\ &+ \int_{\mathrm{d}\Phi_{m}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV} - \mathrm{d}\hat{\sigma}_{NNLO}^{U} \right) \end{split}$$

- $d\hat{\sigma}_{NNLO}^{S}$: real radiation subtraction term for $d\hat{\sigma}_{NNLO}^{RR}$
- ► $d\hat{\sigma}_{NNLO}^{T}$: one-loop virtual subtraction term for $d\hat{\sigma}_{NNLO}^{RV}$
- $d\hat{\sigma}_{NNLO}^{U}$: two-loop virtual subtraction term for $d\hat{\sigma}_{NNLO}^{VV}$
- contribution in each of the square brackets is finite, well behaved in the infrared singular regions and can be evaluated numerically
- ► subtraction terms constructed using the antenna subtraction method at NNLO for hadron colliders → presence of initial state partons to take into account

MOTIVATION NNLO INGREDIENTS 0000 000 NUMERICAL RESULTS

NNLO ANTENNA SUBTRACTION

• universal factorisation of both colour ordered matrix elements and the (m+2)- particle phase space \rightarrow colour connected unresolved particles

 $|M_{m+4}(\ldots,i,j,k,l,\ldots)|^2 J(\{p_{m+4}\}) \longrightarrow |M_{m+2}(\ldots,I,L,\ldots)|^2 J(\{p_{m+2}\}) \cdot X_4^0(i,j,k,l)$

► phase-space factorisation $d\Phi_{m+2}(p_a, \dots, p_i, p_j, p_k, p_l, \dots, p_{m+2}) = d\Phi_m(p_a, \dots, p_l, p_L, \dots, p_{m+2})$ $d\Phi_{X_{ijkl}}(p_i, p_j, p_k, p_l)$

integrated antennae is the inclusive integral

$$\mathcal{X}^0_{ijkl}(s_{ijkl}) = \frac{1}{C(\epsilon)^2} \int \mathrm{d}\Phi_{X_{ijkl}}(p_i, p_j, p_k, p_l) X^0_4(i, j, k, l)$$

MOTIVATION	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	000	000	0000000

INTEGRATED ANTENNAE

- antennae integrals are performed once and for all to become universal building blocks for subtraction of IR singularities at NNLO
- massless antennae (m = 0)

	NLO	NNLO
final-final	\checkmark^1	\checkmark^1
initial-final	$\sqrt{2}$	$\sqrt{3}$
initial-initial	$\sqrt{2}$	$\checkmark^{4,5,6}$

[1] A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, *JHEP* 09 (2005) 056 [hep-ph/0505111];
[2] A. Daleo, T. Gehrmann and D. Maître, *JHEP* 04 (2007) 016 [hep-ph/0612257];

[3] A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, *JHEP* **01** (2010) 118 [0912.0374];

[4] R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, *JHEP* 02 (2011) 098 [1011.6631];

[5] T. Gehrmann, P.F. Monni, JHEP 12 (2011) 049 [1107.4037];

[6] A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, *JHEP* **10** (2012) 047 [1207.5779];

Motivation 0000

events

NNLO INGREDIENTS

NNLO CORRECTIONS TO $pp \rightarrow 2j$

Double-real contribution

- $d\sigma_{NNLO}^{RR} d\sigma_{NNLO}^{S} \quad \text{(gluons only)}$
- numerical convergence between double-real matrix element dσ^{RR}_{NNLO} and antenna subtraction term dσ^S_{NNLO} tested in all soft and collinear phase space regions [N.Glover, JP]

 numerical convergence tested in all soft or collinear phase space regions
 [A.Gehrmann-De Ridder, N.Glover, JP]

Motivation	NNLO INGREDIENT
0000	000

DOUBLE-VIRTUAL CONTRIBUTION

$$\int_{\mathrm{d}\Phi_m} \left(\mathrm{d}\hat{\sigma}^{VV}_{\scriptscriptstyle NNLO} - \mathrm{d}\hat{\sigma}^{U}_{\scriptscriptstyle NNLO}
ight)$$

• renormalized $d\hat{\sigma}_{NNLO}^{VV}$ contains explicit infrared ϵ -poles

J

- $d\hat{\sigma}_{NNLO}^{U}$ is made up of integrated subtraction terms from the double-real radiation and real-virtual radiation
- ► initial-state collinear singularities absorbed by the mass factorization counterterm dô^{MF,2}_{NNLO}

$$\mathrm{d}\sigma_{NNLO}^{U} = -\int_{2}\mathrm{d}\hat{\sigma}_{NNLO}^{S} - \int_{1}\mathrm{d}\hat{\sigma}_{NNLO}^{VS} - \mathrm{d}\hat{\sigma}_{NNLO}^{MF,2}$$

 to show explicit pole cancellation at NNLO recast integrated subtraction terms and mass factorization contribution in a form of a convolution integral evaluated analytically

	gg	qg	qq
$\Gamma^1\otimes\Gamma^1$	\checkmark^1	\checkmark	\checkmark
$\mathcal{X}_3^0\otimes\Gamma^1$	\checkmark^1	\checkmark	\checkmark
$\mathcal{X}_3^0\otimes\mathcal{X}_3^0$	\checkmark^1	\checkmark	\checkmark

[1] [A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP]

Motivation	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	000	000	0000000

DOUBLE-VIRTUAL CONTRIBUTION

new structures arise made from the integrated antennae building blocks

$$\mathbb{X}_{3}^{0}(\bar{1}_{g},\bar{2}_{g},i_{g},j_{g};z_{1},z_{2}) = \mathcal{F}_{3}^{0}(s_{\bar{1}\bar{2}},z_{1},z_{2}) + \frac{1}{2}\mathcal{F}_{3}^{0}(s_{\bar{2}i},z_{1},z_{2}) + \frac{1}{3}\mathcal{F}_{3}^{0}(s_{ij},z_{1},z_{2}) + \frac{1}{2}\mathcal{F}_{3}^{0}(s_{j\bar{1}},z_{1},z_{2}) + \frac{1}{2}\mathcal{F}_{3}^{0}(s_{j\bar{1}},z_{2},z_{2}) + \frac{1}{2}\mathcal{F}_{$$

integrated antennae string with the mass factorization contribution is in direct connection with the *I*₁ operator of Catani at NLO

$$-2I^{(1)}(\epsilon;\bar{1}_{g},\bar{2}_{g},i_{g},j_{g};z_{1},z_{2}) = \mathbb{X}_{3}^{0}(\bar{1}_{g},\bar{2}_{g},i_{g},j_{g};z_{1},z_{2}) - \Gamma^{(1)}_{gg;gg}(z_{1},z_{2})$$

 similarly at NNLO the integrated antennae convolution integrals together with the mass factorization contribution yield in the double-virtual channel

$$-2\mathbf{I}^{(1)}(\epsilon;\bar{1}_{g},\bar{2}_{g},i_{g},j_{g};z_{1},z_{2})^{2} = \left(\mathbb{X}_{3}^{0}-\Gamma_{gg;gg}^{(1)}\right)\otimes\left(\mathbb{X}_{3}^{0}-\Gamma_{gg;gg}^{(1)}\right)\left(\bar{1}_{g},\bar{2}_{g},i_{g},j_{g};z_{1},z_{2}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DOUBLE-VIRTUAL CONTRIBUTION

- ▶ double virtual antennae subtraction term d^U_{NNLO} written compactly rederives the predicted Catani pole structure of the two-loop contribution in the antennae language
- local (pointwise) analytic cancellation of all infrared explicit ε-poles when combined with two-loop matrix elements

$$\mathcal{P}oles\left(\mathrm{d}\hat{\sigma}_{\scriptscriptstyle NNLO}^{\scriptscriptstyle VV}-\mathrm{d}\hat{\sigma}_{\scriptscriptstyle NNLO}^{\scriptscriptstyle U}
ight)=0$$
 (gluons only)

Motivation	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	000	000	0000000

NUMERICAL SETUP

[A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP] (in preparation)

- ► jets identified with the anti- k_T jet algorithm with resolution parameter R = 0.7
- ► jets accepted at rapidities |*y*| < 4.4
- leading jet with transverse momentum $p_t > 80 \text{ GeV}$
- ▶ subsequent jets required to have at least *p*^{*t*} > 60 GeV
- MSTW2008nnlo PDF
- ► dynamical factorization and renormalization scales equal to the leading jet p_T ($\mu_R = \mu_F = \mu = p_T$)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

MOTIVATION	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	000	000	00000000

NUMERICAL SETUP

[A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP] (in preparation)

- ► jets identified with the anti- k_T jet algorithm with resolution parameter R = 0.7
- ► jets accepted at rapidities |*y*| < 4.4
- leading jet with transverse momentum $p_t > 80 \text{ GeV}$
- ▶ subsequent jets required to have at least *p*^{*t*} > 60 GeV
- MSTW2008nnlo PDF
- ► dynamical factorization and renormalization scales equal to the leading jet p_T ($\mu_R = \mu_F = \mu = p_T$)

Integrated cross section results (gluons only channel - preliminary)

	$\sigma_{incl.jet}^{8TeV-LO}(pb)$	$\sigma_{incl.jet}^{8TeV-NLO}(pb)$	$\sigma_{incl.jet}^{8TeV-NNLO}(pb)$
$\mu = 0.5 p_t$	$(12.586 \pm 0.001) \times 10^5$	$(11.299 \pm 0.001) \times 10^5$	$(15.33 \pm 0.03) \times 10^5$
$\mu = p_t$	$(9.6495 \pm 0.001) \times 10^5$	$(12.152 \pm 0.001) \times 10^5$	$(15.20 \pm 0.02) \times 10^5$
$\mu = 2.0 p_t$	$(7.5316 \pm 0.001) \times 10^5$	$(11.824 \pm 0.001) \times 10^5$	$(15.21 \pm 0.01) \times 10^5$

- NNLO result increased by about 25% with respect to the NLO cross section
- flat scale dependence at NNLO

MOTIVATION	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	000	000	00000000

• NNLO QCD corrections to inclusive jet p_T distribution (gluons only) [A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP] (in preparation)

NNLO effect stabilizes the NLO k-factor growth with p_T

< □ > < @ > < Ξ >

 Dac

► double differential inclusive jet *p*_T distribution at NNLO

[A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP] (in preparation)

double differential k-factors

- NNLO result varies between 25% to 12% with respect to the NLO cross section
- similar behaviour between the rapidity slices

Э

Sac

MOTIVATION	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	000	000	0000000

NNLO QCD corrections to dijet mass distribution (gluons only)
 [A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, JP] (in preparation)

・ロト・(型ト・(型ト・(型ト・(ロト))

Motivation	NNLO INGREDIENTS	ANTENNA SUBTRACTION	NUMERICAL RESULTS
0000	000	000	

CONCLUSIONS

- antenna subtraction method generalised for the calculation of NNLO QCD corrections for exclusive collider observables with partons in the initial-state
- explicit *ϵ*-poles in the matrix elements are analytically cancelled by the *ϵ*-poles in the subtraction terms
- non-trivial check of analytic cancellation of infrared singularities between double-real, real-virtual and double-virtual corrections
- ▶ proof-of principle implementation of the $gg \rightarrow gg$ contribution to $pp \rightarrow 2j$ at NNLO in the new NNLOJET parton-level generator

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Future work:

- go beyond gluons only leading colour approximation
- include remaining channels
 - ▶ 4g2q processes
 - 2g4q processes
 - 6q processes