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Introduction

¢ Hadron-collider processes are prime
examples of multi-scale problems
iInvolving several hierarchical scales

e Due to light-like nature of these
processes, scale separation cannot be
performed using a conventional OPE

¢ Instead, any field-theory description of
these processes must be intrinsically
non-local

QCD factorization theorems:

do ~ H({sij},p) | [ Ji(MZ, ) © S({AZ;}, )
i NS

operators containing Wilson lines



Scale separation in Sudakov problems

Separation of short-distance and long-
distance contributions is subtle:

e usually, large logarithms in QFT arise
from hierarchy between a long-distance
(soft) scale m and a short-distance
(hard) scale @@ > m:

Q2
lIl W — lIl F + ln W

¢ in Sudakov problems, dependence on
the hard scale Q is affected by long-
distance physics:
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Scale separation in Sudakov problems

Soft-collinear effective theory (SCET): convenient framework to study
Sudakov problems by describing collinear and soft particles by effective
quark and gluon fields with well-defined interactions and power counting

e factorization of short- and long-distance
contributions follows from structure of Les

e gauge invariance implemented at
Lagrangian level

e operator definitions of jet and soft
functions

e resummation of Sudakov logarithms is
accomplished by solving RG equations

Elegant method for (re-) deriving and using factorization theorems in collider
and heavy-flavor physics, several times going beyond existing calculations

¢ in few cases, new factorization theorems have been established:
Higgs cross section with a jet veto is an important example!



SCET-I;: Correlated scales

Sudakov problems with scale hierarchy ) > P
really involve three correlated scales:

e hard scale Q
¢ (anti-)collinear scale P
e soft scale P2/Q

Region analysis of off-shell Sudakov form factor
reveals that (with P? = -p?):

-

hard collinear soft




SCET-I;: Correlated scales

RG evolution

(A%, 1,0) I|IIIII| (1, 2%, ))

(A% A%, 07)

Generic SCET-I factorization theorem:

do=HJRKRJ®S




SCET-I;: Correlated scales
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RG evolution
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SCET-I;: Correlated scales
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SCET-1l: Absence of the third (soft) scale

(A%, 1,0 (A, A N) (1, A%, 0)

e For observables sensitive to transverse momentum,

standard (ultra-)soft modes do not contribute kY
e How to maintain RG invariance? ol colinear
~ In? @ = — —|— ?
2 P2 AQ ot S
, _....-anti-collinear
hard collinear NQ- """""""""""""""""
220 AQ Q



SCET-1l: Absence of the third (soft) scale

(A%, 1,0 Wy (1, A%, 0)
e Problem is cured by an anomaly of the effective -

theory SCET-II: collinear factorization anomaly o

Becher, MN: 1007.4005 0l e collinear
1 2
5 I’ % =

Qo ~ _..-anti-collinear
: A2 Q| T
collinear anomalous
A2Q  AQ Q



SCET-II: Collinear factorization anomaly

Generic phase-space integrals in SCET-II are ill-defined in dimensional
regularization and require an additional regulator

¢ integrals such as fooodk+/k+ can be avoided using an analytic regulator:

/de(S(W)@(kO)%/deé(kz)H(kO) (/«L

) (8
+ Becher, Bell: 1112.3907

e poles in 1/a cancel when one adds the collinear, anti-collinear, and soft
contributions, but an anomalous dependence on the hard scale Q remains

¢ a variant of the analytic regularization scheme is the rapidity regularization
scheme proposed in Chiu, Jain, Neill, Rothstein: 1202.0814



SCET-II: Collinear factorization anomaly

Generic phase-space integrals in SCET-II are ill-defined in dimensional
regularization and require an additional regulator

¢ integrals such as fooodk+/k+ can be avoided using an analytic regulator:
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+ Becher, Bell: 1112.3907

e poles in 1/a cancel when one adds the collinear, anti-collinear, and soft
contributions, but an anomalous dependence on the hard scale Q remains

¢ a variant of the analytic regularization scheme is the rapidity regularization
scheme proposed in Chiu, Jain, Neill, Rothstein: 1202.0814

In SCET-II, this phenomenon can be interpreted as an anomaly: the breaking
of a classical symmetry of the effective Lagrangian by quantum effects

e as a result, the functional dependence on Q is highly constrained and can
be derived from simple differential equations w.r.t. regulator



ATLAS

A EXPERIMENT

Run: 154822, Event: 14321500
Date: 2010-05-10 02:07:22 CEST

p.(u)=27GeV n(u)= 0.7
p,(u) =45GeV n(u') = 2.2

M, =87 GeV

Z>uu candidate
in 7 TeV collisions

Application I Transverse-momentum
resummation for Z and Higgs production



Drell-Yan production at small gr

Bozzi, Catani, de Florian, Grazzini: 0705.3887

Drell-Yan production of Z, W or Higgs bosons

at small transverse momentum ( gr < M) is

a classical two-scale process, for which the
resummation of Sudakov logs ~ o™ In*" (M /qr)
IS essential

0.4

0.3

d®c/dqr dy (pb/GeV)

® No reasonable fixed-order perturbative
approximation can be obtained, even
if g7 > Aqcp

0.2

0.1

0.0

Factorization theorem obtained using the
collinear anomaly: Becher, MN: 1007.4005

[ MRr=Mp=Q=My

Mp=125 GeV  y=0

. " 20 40 60 80 100
' qr (GeV) 7]

NNLL+NLO ]

e T

\ /

beam functions

Stewart, Tackmann, Waalewijn:

0910.0467

\

anomalous M dependence is
a pure power in Xt space



Drell-Yan production at small gr

In full detail:
g dc Z Z Z/ dz1 1@
dM2dg2 dy SNJW2 — =~ ¢y 22
X [qu—m'j(zla 22, C]%a MQ; /1) Pi/Ny (&1/21, 1) ¢j/Nz(§2/Z2> p) + (g, <> C_?,j)]
with:

2
1 P 1'2 M2 —Faq(z7,1)
ot 0.0) -G - [ . (2225
e o) s o o)
\§

Result can be matched onto the standard CSS resummation formula
(Collins, Soper, Sterman 1984)

Using the anomaly equations, we have derived the last missing ingredient
(the three-loop coefficient As) required for resummation at NNLL order



Infrared protection at very small gr

Becher, MN, Wilhelm: 1109.6027

A careful analysis reveals that the spectrum do/dqr is short-distance
dominated (but genuinely non-perturbative) all the way down to zero
transverse momentum

The appropriate choice of y eliminating large logarithms from the Fourier
iIntegral is:

| 27
pomax(groge)  with: go~ Mexp | — (4CFya + Bo) as(M)

= vyields 1.9 GeV for Z production, and 7.7 GeV for Higgs production

Scale g. controls the size of long-distance hadronic corrections, which can
be noticable for Z production but are very small for Higgs production
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/-boson production at Tevatron

do

Becher, MN, Wilhelm: 1109.6027

e First complete calculation of Z-boson and Higgs production at NNLL+NLO

e Extension to NNLL+NNLO is technically possible (work in progress)

[pb/GeV]
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CDF results
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1 do

/-boson production at LHC

[GeV ']

Becher, MN, Wilhelm: 1109.6027

First complete calculation of Z-boson and Higgs production at NNLL+NLO

Extension to NNLL+NNLO is technically possible (work in progress)
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Higgs-boson production at LHC

Becher, MN, Wilhelm: 1212.2621

e Higgs qr spectrum is predicted using same formalism, only that long-
distance hadronic corrections are much smaller in this case

e Eagerly awaiting data ...

do

[pb/GeV]

dQT
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g MSTW2008NNLO
NNLL+NLO
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pp—>Eg-X
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do
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i pp > H+ X .
Vs =13 TeV
* my =125GeV |
i MSTW2008NNLO
NNLL+NLO
oo-—a——srrr o ~ .+ .
10 20 30 40 50 60

— public code CuTe available at:

http://cute.hepforge.org
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Higgs-boson production at LHC

Becher, MN, Wilhelm: 1212.2621

e Higgs qr spectrum is predicted using same formalism, only that long-
distance hadronic corrections are much smaller in this case

e Eagerly awaiting data ...
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hadronic corrections: Z-boson case hadronic corrections: Higgs case

— public code CuTe available at: http://cute.hepforge.org
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Application lI:
Higgs production with a jet veto



Higgs production with a jet veto

Searches for Higgs boson require stringent
cuts to suppress background events

Since backgrounds are very different when
the Higgs is produced in association with

jets, the searches are performed in jet bins ! ’ N
e require precise predictions for H+n jets, in “ - jets
particular for the 0-jet bin, i.e., the cross PPPTPPY B
. . - 4 t ‘1
section with a jet veto: W,
jet veto . @ R — e e
Pr < Pr ~ 15-30GeV & - ATLAS Preliminary 5o = 0000 " -
- 5000”,— \s=7TeV,JLdt=4.7fb" %g IS“SJ”Q'GTOP
. x H_>WW':"_> N vjets ’;f:ets S
Until very recently, no resummed results for 400 """ " (] Hit2s Gov
the cross section defined with a jet veto were .t

available beyond LL order (parton shower)
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Higgs production with a jet veto

Fixed-order predictions naively suggest that

pp > H+X->WWN+X->evev+X
L R
the cut rate has smaller uncertainties than the
total cross section

— MRST2001 LO, MRST2004 NLO/NNLO

- Mp/RSpp=ppS2M, NNLO
- My = 165 GeV

250 —
Effect is due to an accidental cancellation = |
of large corrections from two sources:

200 —

g

¢ |arge positive corrections to total cross

sections from analytic continuation of
scalar form factor to time-like region

NLO
150

100

LO ]
o ]
Ahrens, Becher, MN, Yang (2008)

| | | | | | | | | |
20 40

60
¢ large negative corrections from Sudakov

80 | 100
pr” [GevV]
logarithms a™ In*" (m g /pyet©)

Anastasiou, Dissertori, Stockli (2007)

True perturbative uncertainty is most likely

significantly Iarger Stewart, Tackmann, Waalewijn (2010)
Stewart, Tackmann (2011)

16



a(pr*®) [pb]

Higgs production with a jet veto

Updated fixed-order predictions for different schemes and scale choices:

a, expansion of €

a(pr*®) [pb]

mH/2 <u< 2mH

10 15 20 25 30
pTvetO [GCV]

= bands do not reflect true uncertainties!

a, expansion of o

my/2 < u <2my

10 15 20 25
pTvetO [GCV]

30
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Resummation at NLL order

Recently, it has been shown that the jet veto Higgs production (my = 125 GeV), NLL+NNLO
: NI A B "
can be resummed at NLL order using the o SO — I ——

mH/4 < u’F{,F’ Q< mH

numerical resummation code CAESAR " MISTW2008 NNLO PDFs

0.8 | 7 i
Banfi, Salam, Zanderighi: 1203.5773 A5

6 GBI .
e NLL+NNLO calculation still suffers from . |

significant perturbative uncertainties and 0.4 A 7

- ©/ i schemea L~ ] -
scheme dependences; hence calculate cut scheme b ] -
efficiency instead of cross section

8(pt,veto)

0.2
schemec [ 000 -

1.3

NN :
2 ARty

1.1 'v“;\\\\ \
RN \

R S S S

€(Pt,veto) / Ecentral(Ptveto)

NSO SONNNN ol s ]
09 "::g:::::::: ************************************************* ]
ooy o 1
0.8 v"”’ A I -
55 -
0.7 XA A 4 | 1 . i 1 1 |
10 100

pt,veto [GeV]



Resummation at NNLL order and beyond

Recently, it has been shown that the jet veto

can be resummed at NLL order using the "o S Hm125Gev '
numerical resummation code CAESAR oo [ e g ]
Banfi, Salam, Zanderighi: 1203.5773 | fwepon revse s G2
. . & 06 ke G -
e NLL+NNLO calculation still suffers from s
significant perturbative uncertainties and 04 b 40 SR N NNLO _
_ 7y 4 - NNLL+NNLO
scheme dependences; hence calculate cut / qT-rescaled POWHEG + Pythia === |
efficiency instead of cross section 3 92 -
g {//l// ™
5 1.1 e =
S f h : ded g 1 éééﬂm{{/{{@ﬂ%g%gggﬂ
oon after, the resummation was extended to - = 1
NNLL order (matched to NNLO) R B L
S 1o 20 30 50 70 100

Banfi, Monni, Salam, Zanderighi: 1206.4998

e uncertainties are significantly reduced

Meanwhile, we have shown that the jet-veto cross factorizes

to all orders and can be resummed using SCET !
Becher, MN: 1205.3806 18



Inclusive jet clustering algorithm

Distance measure:

\/Ay@%’ T Agb?j

. o n=1: k
dij — mln(pT@-aij) R n=0: CT/A
do p%z- n=-1: anti-kt

Find the smallest of all dj;, dis. If it is a dj, combine particles / and j into one
particle. If it is a dig, call particle i a jet and remove it from the list. Repeat until
all particles are clustered in jets

Since two different SCET modes have a large rapidity gap, the jet algorithm
clusters soft particles with soft ones and collinear particles with collinear ones,
except in corners of phase space (power-suppressed effects)

— jet veto can be applied separately in each sector of SCET
(simple factorization theorem)

19



All-order factorization theorem

C 'ty >

Based on SCET analysis, propose first all-order factorization formula for the

cross section with a jet veto with R=0(1):
anomalous my dependence is a

pure power in prt space
4 ™

veto

dO' veto 2Fgg(pT )
: —<>
1d d

L Becher, MN: 1205.3806

Note close structural similarity with gr resummation formula!



All-order factorization theorem

Ingredients required for resummation at NNLL order:

e Ct and Cs at two-loop order in RG-improved perturbation theory
(known to three loops)

e one-loop collinear kernel functions:

L? L
Ly o) = 80— 2) 8 | Ut (T8 5 = L) |+ [ <P T 4 Rye2)
2
Ryyg(2) = —Cy n 6(1 — z2), Ryq(2) = 2CFz B 1
LJ_ — 21In ~veto
Pr

¢ two-loop anomaly coefficient:

L2
Fgg (p\jfgto, /L) = Ug (Fg‘ LJ_ -+ d‘lfeto) -+ ag (Fglﬁo 7L -+ I’i‘l LJ_ e d;eto)

/ / Becher, MN: 1205.3806

vanishes! only dependence on jet radius
parameter R at NNLL order

21



All-order factorization theorem

Determination of anomaly coefficient doVete:

e matching our formula with NNLL result of BMSZ Banfi, Monni, Salam, Zanderighi: 1206.4998
yields:

dy*° = dj — 32C 4 f(R)
\

with: from: Becher, MN: 1007.4005

f(R) = —(1.0963 Cy + 0.1768 Trny) In R + (0.6072 C4 — 0.0308 Trn )
— (0.5585 C'y — 0.0221 Tpny) R? + (0.0399 Cy — 0.0004 Tens) R* + . ..

¢ originally we had an extra constant term in the above relation, which
appeared because we had incorrectly assumed that the BMSZ formula still
holds in the limit R— o

We have now re-derived the expression for d>'e* from a two-loop calculation
in SCET, finding complete agreement with the BMSZ formula !

Thomas Becher, MN, Lorena Rothen (to appear)
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Matching to fixed-order results

Study two different matching schemes:

e perform matching in naive way (scheme A)
e factor out hard function H times anomaly term (scheme B)

Since the hard function H contains the large corrections affecting the total
cross section (time-like scalar form factor), scheme B is better motivated than
scheme A

Veto
veto

Caveat: numerical results are preliminary Thomas Becher, MN, Lorena Rothen (to appear)

veto ( veto
Pr
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NNLL+NLO results (scheme A)

N
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NNLL+NLO results (scheme B)
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NNLL+NLO results

General observations:

e matching corrections ~(pt'¢*°/mnu)? small for low pr'e* values and increase for
larger ones

e scale variations under control for not too small jet radii (R>0.6)

* larger scale dependence for smaller radii results from strong R-dependence
of the two-loop anomaly coefficient davet

e in this region, clustering logarithms
~as™! In"R should be resummed

To further reduce the scale variations
at small R, one should extend the
analysis to NNNLL+NNLO order

(in progress)

dzveto (R) / dzHiggs

e study NNLO matching as one

important part of such an analysis
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NNLL+NNLO results

a(pr'*°) [pb]

a(pr'*°) [pb]
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Comparison to other work

e NNLL formula of Banfi, Monni, Salam, Zanderighi: 1206.4998 is
fully consistent with our all-order factorization theorem; both
general structure and explicit computations of ingredients agree

e Tackmann, Walsh, Zuberi: 1206.4312 (TW/Z) use a different
formalism (“rapidity renormalization group”) but obtain the same
factorization formula

e however, they argued that the factorization formula is of little use,
since it only holds at parametrically small R«1, where

clustering logs must be resummed

o TW/Z claim that soft-collinear mixing terms spoil factorization
starting at NNLL order (later modified to “beyond NNLL order”)

28



Soft-collinear mixing terms ?

e |n dimensional regularization, soft
and collinear contributions are
integrated over full phase space

e Avoid double counting by multi-pole
expanding the integrands, or by
performing “zero-bin” subtractions
of overlap contributions

We find that soft-collinear mixing contributions obtained without
performing the multi-pole expansion precisely cancel against these
zero-bin subtraction terms !

Have confirmed this by explicit two-loop calculations
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Conclusions

SCET provides efficient tools for addressing difficult collider-
physics problems: systematic factorization and resummation

Many applications exist for Drell-Yan processes (production of
Z, W, H bosons) and top-quark pair production

In several cases,; SCET methods have pushed the limits of what
has been accomplished using traditional techniques

Collinear anomaly is an important ingredient to factorization
analyses for observables sensitive to transverse momenta

Have developed a consistent framework for gr resummation and -«
jet-veto cross sections for pp—(colorless bosons)+0 jets e

f
' !
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