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Introduction

• Hadron-collider processes are prime 
examples of multi-scale problems 
involving several hierarchical scales

• Due to light-like nature of these 
processes, scale separation cannot be 
performed using a conventional OPE 

• Instead, any field-theory description of 
these processes must be intrinsically 
non-local

QCD factorization theorems:
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Scale separation in Sudakov problems
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Separation of short-distance and long-
distance contributions is subtle:
• usually, large logarithms in QFT arise 

from hierarchy between a long-distance 
(soft) scale m and a short-distance 
(hard) scale             :

• in Sudakov problems, dependence on 
the hard scale Q is affected by long-
distance physics:
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Scale separation in Sudakov problems

Soft-collinear effective theory (SCET): convenient framework to study 
Sudakov problems by describing collinear and soft particles by effective 
quark and gluon fields with well-defined interactions and power counting

• factorization of short- and long-distance 
contributions follows from structure of Leff 

• gauge invariance implemented at 
Lagrangian level

• operator definitions of jet and soft 
functions

• resummation of Sudakov logarithms is 
accomplished by solving RG equations 

• in few cases, new factorization theorems have been established:    
Higgs cross section with a jet veto is an important example!

Elegant method for (re-) deriving and using factorization theorems in collider 
and heavy-flavor physics, several times going beyond existing calculations
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Sudakov problems with scale hierarchy              
really involve three correlated scales: 

• hard scale Q
• (anti-)collinear scale P
• soft scale P2/Q

Region analysis of off-shell Sudakov form factor 
reveals that (with P2 = -p2):

SCET-I: Correlated scales
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SCET-I: Correlated scales
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Generic SCET-I factorization theorem:
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Figure 1. The mass-shell hyperbolae showing the distinction between the di↵erent sectors [5]. The
separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft
sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences
arising from the collinear sector.

Let us now see how factorization of the soft from collinear modes leads to rapidity diver-

gences. Consider the full theory one loop vertex correction. The relevant scalar integral is

given by

If =

Z

[dnk]
1

(k2 � M2)

1

(k2 � n · kn̄ · p1 + i✏)

1

(k2 � n̄ · kn · p2 � i✏)
(4.3)

This integral is finite in UV as well as the IR. In the e↵ective theory there are three

contributions. A soft integral coming from taking the limit kµ ! (M, M, M)

IS =

Z

[dnk]
1

(k2 � M2)

1

(�n · k + i✏)

1

(�n̄ · k + i✏)
(4.4)

and two collinear integrals (In, In̄) of the form

In =

Z

[dnk]
1

(k2 � M2)

1

(k2 � n · k n̄ · p1 + i✏)

1

(�n̄ · k + i✏)
. (4.5)

Given that the full theory graph is IR finite, so must be the sum of the e↵ective theory

graphs. Let us consider the soft graph integrating over k?.

IS ⇠
Z

[d2k](n · k n̄ · k � M2)�2✏ 1

(�n · k + i✏)

1

(�n̄ · k + i✏)

(4.6)

We see that the relevant region of phase space lives on the hyperbola n · k n̄ · k ⇠ M2, shown

in figure 1. O↵ the hyperbola the integral becomes scaleless. Given this restriction, we note

that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or zero. These

divergences are not regulated by dimensional regularization and correspond to the rapidity

divergences that arise when the soft integral overlaps with the two collinear rapidity regions.

This is illustrated in figure (4). On the other hand, if we consider the collinear n diagram

– 9 –
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SCET-II: Absence of the third (soft) scale
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• For observables sensitive to transverse momentum, 
standard (ultra-)soft modes do not contribute

• How to maintain RG invariance?
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Figure 1. The mass-shell hyperbolae showing the distinction between the di↵erent sectors [5]. The
separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft
sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences
arising from the collinear sector.
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• Problem is cured by an anomaly of the effective 
theory SCET-II: collinear factorization anomaly
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arising from the collinear sector.
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SCET-II: Collinear factorization anomaly

collinear

Generic phase-space integrals in SCET-II are ill-defined in dimensional 
regularization and require an additional regulator
• integrals such as                   can be avoided using an analytic regulator:

• poles in 1/α cancel when one adds the collinear, anti-collinear, and soft 
contributions, but an anomalous dependence on the hard scale Q remains

• a variant of the analytic regularization scheme is the rapidity regularization 
scheme proposed in Chiu, Jain, Neill, Rothstein: 1202.0814

R1
0 dk+/k+

Becher, Bell: 1112.3907

Z
dDk �(k2) ✓(k0) !

Z
dDk �(k2) ✓(k0)

✓
⌫

k+

◆↵
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In SCET-II, this phenomenon can be interpreted as an anomaly: the breaking 
of a classical symmetry of the effective Lagrangian by quantum effects

• as a result, the functional dependence on Q is highly constrained and can 
be derived from simple differential equations w.r.t. regulator
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Application I: Transverse-momentum 
resummation for Z and Higgs production



Drell-Yan production at small qT

Drell-Yan production of Z, W or Higgs bosons 
at small transverse momentum (               ) is 
a classical two-scale process, for which the 
resummation of Sudakov logs                             
is essential
• no reasonable fixed-order perturbative 

approximation can be obtained, even            
if                      

Factorization theorem obtained using the 
collinear anomaly: 

qT ⌧ M

⇠ ↵n
s ln2n(M/qT )

qT � ⇤QCD

d�

dq
T

⇠ H(M)

Z
d2x

T

e�iqT ·xT [I(x
T

)⌦ �] [I(x
T

)⌦ �] (M2x2
T

)�Fqq̄(xT )

beam functions anomalous M dependence is
a pure power in xT space

Figure 1: The qT spectrum at the LHC with MH = 125 GeV and y = 0: results at NNLL+NLO
(solid line) and NLO (dashed line) accuracy. The inset plot shows the ratio K (see Eq. (15)) of
the corresponding qT cross sections, fixing y = 0 (solid line) and integrating them over the full
rapidity range (dashed line).

large qT , the perturbative expansion at any fixed order has no pathological behaviour: it leads to
a positive cross section, whose value decreases as qT increases. When qT → 0, instead, any fixed-
order calculation diverges alternatively to ±∞ depending on the perturbative order. Therefore, to
go smoothly from the large-qT behaviour to the small-qT limit, the NLO (or N3LO, and so forth)
calculation of the cross section has to show at least one peak in the intermediate-qT region.

We recall once more that the label NLO in Fig. 1 refers to (and originates from) the perturbative
expansion at large qT . To avoid possible misunderstandings (coming from such a label) when
interpreting the dashed (NLO) curve in the small-qT region, we point out that, the only difference
produced in Fig. 1 by the NNLO calculation at small qT (this calculation can be carried out, for
example, by using the NNLO codes of Refs. [14, 15]) is a spike around the point qT = 0. More
precisely, as long as qT #= 0, the dashed curve is exactly the result of the NNLO calculation of the
qT cross section at small qT . The only difference introduced in the plot by this NNLO calculation
would occur in the first bin (with arbitrarily small size) that includes the point qT = 0. The
NNLO value of the qT cross section in this first bin is positive and fixed by the value of the NNLO
total cross section††. Of course, owing to the increasingly negative behaviour of the qT distribution
when qT → 0, the NNLO value of the qT cross section in the first bin increases by decreasing the
size of that bin.

The resummed NNLL+NLO result in Fig. 1 is physically well-behaved at small qT (it vanishes

††By definition, the integral over qT of d2σ/(dqT dy) at NNLO is equal to dσ/dy at NNLO.
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Drell-Yan production at small qT

In full detail: 

with:

Result can be matched onto the standard CSS resummation formula 
(Collins, Soper, Sterman 1984) 

Using the anomaly equations, we have derived the last missing ingredient 
(the three-loop coefficient A3) required for resummation at NNLL order

In the context of SCET, generalized PDFs defined in terms of hadron matrix elements in
which collinear fields are separated by distances that are not light-like are referred to as beam
functions. For such functions an analogous expansion was considered in [17], and an expression
for the one-loop kernel of the quark beam function was derived in [18]. The evolution equations
for the new kernels Ii←j follow when we combine (16) with the standard DGLAP equations

d

d lnµ
φi/N(z, µ) =

∑

j

∫ 1

z

du

u
Pi←j(z/u, µ)φj/N(u, µ) . (21)

We obtain

d

d lnµ
Iq←i(z, x

2
T , µ) =

[
ΓF
cusp(αs) ln

x2
Tµ

2

4e−2γE
− 2γq(αs)

]
Iq←i(z, x

2
T , µ)

−
∑

j

∫ 1

z

du

u
Iq←j(u, x

2
T , µ)Pj←i(z/u, µ) .

(22)

Because of the complicated form of the DGLAP equations, no closed solution can be derived.
Neglecting power corrections of order Λ2

QCD/q
2
T , we can use relation (20) to express the dif-

ferential cross section (18) as a convolution of perturbative, factorized hard-scattering kernels

Cqq̄→ij(z1, z2, q
2
T ,M

2, µ) =
∣∣CV (−M2, µ)

∣∣2 1

4π

∫
d2x⊥ e

−iq⊥·x⊥

(
x2
TM

2

4e−2γE

)−Fqq̄(x2
T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(23)

with ordinary PDFs. The result reads

d3σ

dM2 dq2T dy
=

4πα2

3NcM2s

∑

q

e2q
∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1
z1

∫ 1

ξ2

dz2
z2

(24)

×
[
Cqq̄→ij(z1, z2, q

2
T ,M

2, µ)φi/N1(ξ1/z1, µ)φj/N2(ξ2/z2, µ) + (q, i ↔ q̄, j)

]
.

This formula, as well as relations (25) and (27) below, receive power corrections in the two
small ratios q2T/M

2 and Λ2
QCD/q

2
T . This will not be indicated explicitly.

Integrating this result over rapidity, with |y| ≤ ln(1/τ), we obtain

d2σ

dM2 dq2T
=

4πα2

3NcM2s

∑

q

e2q
∑

i=q,g

∑

j=q̄,g

∫∫

z1z2≥τ

dz1
z1

dz2
z2

×
[
Cqq̄→ij(z1, z2, q

2
T ,M

2, µ) ffij
( τ

z1z2
, µ

)
+ (q, i ↔ q̄, j)

]
,

(25)

where the parton luminosities are defined as

ffij(u, µ) =

∫ 1

u

dz

z
φi/N1(z, µ)φj/N2(u/z, µ) . (26)
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which collinear fields are separated by distances that are not light-like are referred to as beam
functions. For such functions an analogous expansion was considered in [17], and an expression
for the one-loop kernel of the quark beam function was derived in [18]. The evolution equations
for the new kernels Ii←j follow when we combine (16) with the standard DGLAP equations

d

d lnµ
φi/N(z, µ) =

∑

j

∫ 1

z

du

u
Pi←j(z/u, µ)φj/N(u, µ) . (21)

We obtain

d

d lnµ
Iq←i(z, x

2
T , µ) =

[
ΓF
cusp(αs) ln

x2
Tµ

2

4e−2γE
− 2γq(αs)

]
Iq←i(z, x

2
T , µ)

−
∑

j

∫ 1

z

du

u
Iq←j(u, x

2
T , µ)Pj←i(z/u, µ) .

(22)

Because of the complicated form of the DGLAP equations, no closed solution can be derived.
Neglecting power corrections of order Λ2

QCD/q
2
T , we can use relation (20) to express the dif-

ferential cross section (18) as a convolution of perturbative, factorized hard-scattering kernels

Cqq̄→ij(z1, z2, q
2
T ,M

2, µ) =
∣∣CV (−M2, µ)

∣∣2 1

4π

∫
d2x⊥ e

−iq⊥·x⊥

(
x2
TM

2

4e−2γE

)−Fqq̄(x2
T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(23)

with ordinary PDFs. The result reads

d3σ

dM2 dq2T dy
=

4πα2

3NcM2s

∑

q

e2q
∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1
z1

∫ 1

ξ2

dz2
z2

(24)

×
[
Cqq̄→ij(z1, z2, q

2
T ,M

2, µ)φi/N1(ξ1/z1, µ)φj/N2(ξ2/z2, µ) + (q, i ↔ q̄, j)

]
.

This formula, as well as relations (25) and (27) below, receive power corrections in the two
small ratios q2T/M

2 and Λ2
QCD/q

2
T . This will not be indicated explicitly.

Integrating this result over rapidity, with |y| ≤ ln(1/τ), we obtain

d2σ

dM2 dq2T
=

4πα2

3NcM2s

∑

q

e2q
∑

i=q,g

∑

j=q̄,g

∫∫

z1z2≥τ

dz1
z1

dz2
z2

×
[
Cqq̄→ij(z1, z2, q

2
T ,M

2, µ) ffij
( τ

z1z2
, µ

)
+ (q, i ↔ q̄, j)

]
,

(25)

where the parton luminosities are defined as

ffij(u, µ) =

∫ 1

u

dz

z
φi/N1(z, µ)φj/N2(u/z, µ) . (26)
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Infrared protection at very small qT

A careful analysis reveals that the spectrum              is short-distance 
dominated (but genuinely non-perturbative) all the way down to zero 
transverse momentum

The appropriate choice of μ eliminating large logarithms from the Fourier 
integral is:

➡  yields 1.9 GeV for Z production, and 7.7 GeV for Higgs production 

Scale     controls the size of long-distance hadronic corrections, which can 
be noticable for Z production but are very small for Higgs production

µ ⇠ max

�
qT , q⇤

�
q⇤ ⇡ M exp

✓
� 2⇡

(4CF/A + �0)↵s(M)

◆
with:

d�/dqT

q⇤

Becher, MN, Wilhelm: 1109.6027
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Z-boson production at Tevatron

Tevatron, Run I
CDF results
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Figure 7: Comparison with Tevatron Run I data from CDF, with and without long-distance
corrections. The lower panels show the deviation from the default theoretical prediction.

have discussed in the previous section that long-distance corrections will shift the peak to the
right, and Figure 4 shows that a shift of 0.75GeV corresponds to a value of ΛNP = 0.6GeV.
In Figure 7, we compare again to the CDF data [26] and plot the theoretical prediction for
both ΛNP = 0 and ΛNP = 0.6GeV. In the lower panels, we give the ratio of the experimental
and theoretical results to our default prediction. Including a non-perturbative shift, a good
description of the data is achieved over the entire qT range. In Figure 8, we repeat the same
comparison for the Tevatron Run II results from DØ [31, 32] and for the LHC result of the
ATLAS collaboration [33]. Since this data is not finely binned in the peak region, it difficult to
draw firm conclusions on the necessity for long-distance corrections. However, in both cases,
the first data bin is below the prediction without including a long-distance correction.

The systematic experimental uncertainties which affect the low qT experimental results are
substantial, because it is highly sensitive to lepton transverse momentum resolution. Recently,
two new variables aT and φ∗

η were introduced, which probe the same physics but have reduced
sensitivity to the momentum resolution [34, 35]. DØ has now performed a very precise mea-
surement of the variable φ∗

η [36]. It would be interesting to include the lepton decay in our
results and to study these variables. In the traditional framework, resummed results for these
quantities were presented recently in [37, 38].

The region of larger qT ! 20GeV is not affected by long-distance corrections and should be
described well by fixed-order perturbation theory. In this region the data lies somewhat above
the prediction, in particular for the case of the ATLAS results. A comparison to the existing
fixed-order results is given in Figure 9. The red bands correspond to the O(α2

s) fixed-order
result for the spectrum, which the highest order currently known. To compute this result we

22

• First complete calculation of Z-boson and Higgs production at NNLL+NLO
• Extension to NNLL+NNLO is technically possible (work in progress) 
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Z-boson production at LHC

• First complete calculation of Z-boson and Higgs production at NNLL+NLO
• Extension to NNLL+NNLO is technically possible (work in progress) 
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Figure 8: Comparison to Tevatron Run II and ATLAS data, with and without long-distance
corrections. The lower panels show the deviation from the default theoretical prediction.

use the numerical code QT [39]. For the sake of comparison, we have evaluated all results
using the MRST2008NNLO PDF set. The fixed-order results diverge to ±∞ for vanishing
transverse momentum. Since the fixed-order result depends both on qT and MZ it is not clear
which value one should choose for the renormalization and factorization scales. The edges of
the fixed-order band in Figure 9 correspond to the two choices µ = qT and µ = MZ . The

23

same hadronic parameter 
as for Tevatron!

pp! Z + X ! `+`� + X

12
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Higgs-boson production at LHC

• Higgs qT spectrum is predicted using same formalism, only that long-
distance hadronic corrections are much smaller in this case

• Eagerly awaiting data ... 

Becher, MN, Wilhelm: 1212.2621
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Figure 4: Comparison of the resummed and matched transverse-momentum distributions of
Higgs bosons produced at the LHC, for

√
s = 8TeV (left) and

√
s = 13TeV (right). The

default matching scheme is adopted. Note the different scales in the plots.

hard function at the fixed default scale µ = qT + q∗. Doing so has the same qualitative effect
on the matching correction, but as shown in the third plot the strong cancellation of scale
dependence is not observed. To be conservative, we adopt this last choice as our “default
matching” prescription.

Since the matching correction for Higgs-boson production is several times larger than that
for the Drell-Yan case (see e.g. [7]), it would be preferable to extend the matching to the fixed-
order cross section to two-loop order. This requires some effort, but it is possible since the
corresponding fixed-order result is known [27–29] and has been implemented in several public
codes, e.g. MCFM [30] and HNNLO [31]. We note that the quark beam function Iq→q(z, x2

T , µ)
has recently been computed to two-loop accuracy [32]. Once this result is extended to the
gluon channel, all two-loop ingredients for the resummed expression (15) will be known, and
the matching should then be extended to O(α2

s).
Our final results for the resummed and matched differential cross sections for Higgs pro-

duction at the LHC, for
√
s = 8TeV and 13TeV, are shown in Figure 4. The shape of the two

spectra is very similar, the main effect of the higher center-of-mass energy being an increase
in the cross section by about a factor of 2. The scale uncertainty is around ±10% in the peak
region and increases for larger qT , as indicated in the panels below the plots. Our results are
fully compatible with the NNLL order results of [4] obtained in the traditional resummation
framework developed in [1]. The uncertainties found in that paper are slightly smaller in the
peak region, but about a factor of 2 smaller at large qT . The reason for the reduced scale
uncertainty is that this work implements matching to O(α2

s) as well as the hard-collinear
two-loop corrections, which were calculated in [33].
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Higgs-boson production at LHC

• Higgs qT spectrum is predicted using same formalism, only that long-
distance hadronic corrections are much smaller in this case

• Eagerly awaiting data ... 
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Figure 2: Comparison of the importance of long-distance hadronic effects on the differential
cross sections dσ/dqT for Z-boson (left) and Higgs-boson production (right) at the LHC with√
s = 8TeV. We adopt the gaussian model (32) and vary ΛNP between 0 and 1GeV. The cross

sections for Z-boson production include a factor of Br(Z → "+"−) = 3.37%.

transverse distances and is parameterized in terms of a hadronic scale ΛNP. For simplicity,
we will assume that this form factor is independent of ξ. The above ansatz inserts a factor
[fhadr(xTΛNP)]2 under the integral over xT in (26), which suppresses the region of very large
xT values. We will employ the gaussian model

f gauss
hadr (xTΛNP) = exp

(

−Λ2
NP x

2
T

)

(32)

for the form factor. It was shown in [7] that the functional form of the model function only
has a minor impact on the results, which are mainly sensitive to the value of the parameter
ΛNP. Choosing ΛNP ≈ 600MeV shifts the position of the peak of the qT distribution for Z-
boson production at the LHC from 3.17GeV to 3.51GeV and yields to a significantly better
agreement with the data. A similar effect is seen for Tevatron data.

In Figure 2, we compare the situation in Drell-Yan production of Z bosons, for which the
characteristic scale q∗ ≈ 1.75GeV is rather low, with that in Higgs production at the LHC,
for which q∗ ≈ 7.7GeV is safely in the perturbative domain. As expected, we find that the
impact of hadronic effects is significantly reduced in the latter case. With ΛNP ≈ 600MeV,
for instance, the peak position shifts by merely 110MeV (from 9.09GeV to 9.20GeV), which
is hardly visible on the scale of the plot. We will see in the next section that perturbative
uncertainties are significantly larger than this effect. It is therefore safe to ignore the potential
impact of long-distance effects for all practical purposes.

3 Predictions for the LHC

Having discussed the factorization of the cross section and its behavior at very small qT , we now
present our final results for the transverse-momentum spectrum of Higgs bosons produced in

12

hadronic corrections: Z-boson case hadronic corrections: Higgs case 

→ public code CuTe available at:  http://cute.hepforge.org

Becher, MN, Wilhelm: 1212.2621
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Application II: 
Higgs production with a jet veto



Higgs production with a jet veto

Searches for Higgs boson require stringent 
cuts to suppress background events

Since backgrounds are very different when 
the Higgs is produced in association with 
jets, the searches are performed in jet bins  
• require precise predictions for H+n jets, in 

particular for the 0-jet bin, i.e., the cross 
section with a jet veto:   

Until very recently, no resummed results for 
the cross section defined with a jet veto were 
available beyond LL order (parton shower)

pjetT < pvetoT ⇡ 15�30GeV

jets

15



Higgs production with a jet veto

Fixed-order predictions naively suggest that 
the cut rate has smaller uncertainties than the 
total cross section

Effect is due to an accidental cancellation 
of large corrections from two sources: 
• large positive corrections to total cross 

sections from analytic continuation of 
scalar form factor to time-like region

• large negative corrections from Sudakov 
logarithms  

True perturbative uncertainty is most likely 
significantly larger 

σ(fb) LO NLO NNLO

µ = Mh
2 152.63 ± 0.06 270.61 ± 0.25 301.23 ± 1.19

µ = 2Mh 103.89 ± 0.04 199.76 ± 0.17 255.06 ± 0.81

Table 1: The cross-section through NNLO with no experimental cuts applied.

K(N)NLO(µ) =
σ(N)NLO(µ)

σLO(µ)
, (4.1)

range from 1.77 to 1.92 at NLO and from 1.97 to 2.45 at NNLO, depending on the scale

choice 4.

It is important to compare the perturbative expansions for the inclusive cross-section

and differential Higgs boson observables. We find many kinematic distributions which

exhibit a different perturbative pattern than the inclusive cross-section. We present here

integrated differential distributions

σ(X) =

∫ X ∂σ

∂x
dx;

the result for a bin x ∈ [X1,X2] can be obtained from the difference

σ(x ∈ [X1,X2]) = σ(X2) − σ(X1).

Figure 1: On the left plot, the cross-section to produce a Higgs boson vetoing events with jets
in the central region |η| < 2.5 and pjet

T > pveto
T (no other cut is applied). On the right plot, the

K-factor as a function of pveto
T . The dashed horizontal lines correspond to the NLO and NNLO

K-factors for the inclusive cross-section. The vertical solid line denotes the value of pveto
T in the

signal cuts of Section 3.

4Note that the K-factor is often defined in the literature as the ratio of the NLO or the NNLO cross-

section at a scale µ over the LO cross-section at a fixed scale µ0 (e.g. µ0 = Mh). Since we allow with our

definition in Eq. 4.1 both numerator and denominator to vary, a large scale variation of the K-factor does

not necessarily indicate a big scale variation of the NLO or the NNLO cross-section in the numerator.

– 6 –

Anastasiou, Dissertori, Stöckli (2007)

 Ahrens, Becher, MN, Yang (2008)

↵n
s ln2n(mH/pvetoT )

Stewart, Tackmann, Waalewijn (2010) 
Stewart, Tackmann (2011)
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Higgs production with a jet veto

Updated fixed-order predictions for different schemes and scale choices:

      ⇒ bands do not reflect true uncertainties!
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables

2
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Resummation at NLL order

Recently, it has been shown that the jet veto 
can be resummed at NLL order using the 
numerical resummation code CAESAR  

• NLL+NNLO calculation still suffers from 
significant perturbative uncertainties and 
scheme dependences; hence calculate cut 
efficiency instead of cross section 

Banfi, Salam, Zanderighi: 1203.5773 
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Figure 3: NLL+NNLO jet-veto efficiency for Higgs (left) and Z-boson production (right)
using three different matching prescriptions. For each one, the thick solid line corresponds
to the result obtained with µR = µF = Q = MH/Z/2, while the band shows the scale
uncertainty as obtained from the envelope of the choices of Eq. (3.14) and from Q-scale
variation (taking Q = {MB/4,MB/2,MB} for µR = µF = MH/Z/2). The lower panels
show the results normalised to the central scale choice for scheme a.
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Resummation at NNLL order and beyond

Recently, it has been shown that the jet veto 
can be resummed at NLL order using the 
numerical resummation code CAESAR  

• NLL+NNLO calculation still suffers from 
significant perturbative uncertainties and 
scheme dependences; hence calculate cut 
efficiency instead of cross section 

Soon after, the resummation was extended to 
NNLL order (matched to NNLO)  

• uncertainties are significantly reduced

Banfi, Salam, Zanderighi: 1203.5773 

Banfi, Monni, Salam, Zanderighi: 1206.4998 

Jet veto efficiency NNLL+NNLO results
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compared to
NNLO and

POWHEG+Pythia
good agreement!

NNLL reduces
uncertainties from
∼ 15% →∼ 9%

[0-jet / ≥ 1-jet
correlations
available too]

public code at

http://jetvheto.hepforge.org
Gavin Salam (CERN) Jets in Higgs Searches Higgs XS WG 2012-12-06 14 / 30

Meanwhile, we have shown that the jet-veto cross factorizes 
to all orders and can be resummed using SCET !

Becher, MN: 1205.3806 18



Distance measure: 

Find the smallest of all dij, diB. If it is a dij, combine particles i and j into one 
particle. If it is a diB, call particle i a jet and remove it from the list. Repeat until 
all particles are clustered in jets

Since two different SCET modes have a large rapidity gap, the jet algorithm 
clusters soft particles with soft ones and collinear particles with collinear ones, 
except in corners of phase space (power-suppressed effects)

Inclusive jet clustering algorithm

rather than a convolution arises because kT -type jet algorithms do not cluster soft and collinear
radiation inside the same jet at leading power in an expansion in pveto

T /mH . However, as for
pT resummation, the naive factorization is affected by a collinear anomaly [26], which induces
dependence on the Higgs mass in the product of beam-jet and soft functions. We derive the
all-order form of this anomaly and and give simple analytic formulae for the resummed cross
section. We present all ingredients necessary for a resummation at NNLL order except for
a single two-loop coefficient, for which we don not have an analytic expression at present.
This coefficient is determined numerically, using the existing NNLO fixed-order codes for the
Higgs-boson production cross section [21, 22].

In the next section, we will perform the computation of the cross section in SCET and will
use the effective theory to derive a factorization theorem for Higgs production in the presence
of a jet veto. The factorization theorem then allows for the resummation of the logarithmically
enhanced corrections. The ingredients for NNLL accuracy are given in Section 3. Phenomeno-
logical predictions are then given in Section 4. In the final section, we summarize our findings.
[Comment on non-global logs?]

2 Factorization and resummation of the cross section

In the heavy top-quark limit, the effective Lagrangian describing Higgs production via gluon-
gluon fusion reads [?]

Leff = Ct(m
2
t , µ)

αs(µ)

12π

H

v
Ga

µν Gµν,a , (1)

where the Wilson coefficient Ct = 1 + O(αs) accounts for higher-order loop effects. The
differential cross section for Higgs production at the LHC in the presence of a jet veto can
then be written as

dσ(pveto
T ) =

1

2s

(

αs(µ)

12πv

)2

C2
t (m

2
t , µ)

d3q

(2π)3 2Eq

∫

d4x e−iq·x

×
∑

X

′
〈P (p1)P (p2)|Ga

µν Gµν,a(x) |X〉 〈X|Gb
ρσ Gρσ,b(0) |P (p1)P (p2)〉 ,

(2)

where the prime on the sum indicates that we only sum over those hadronic final states X that
satisfy the jet veto. We work with the usual class of sequential recombination jet algorithms
[?], with distance measure

dij = min(pn
T i, p

n
Tj)

√

∆y2
ij + ∆φ2

ij

R
,

diB = pn
T i ,

(3)

where n = 1 corresponds to the kT algorithm, n = 0 gives the Cambridge-Aachen algorithm,
and n = −1 is the anti-kT algorithm. The particles with the smallest distance are combined
into a new “particle” whose momentum is the sum of the momenta of the parent particles. If
the smallest distance is diB, the particle is considered a jet and removed from the list. The

2

n=1:  kT

n=0:  C/A
n=-1: anti-kT

→ jet veto can be applied separately in each sector of SCET
(simple factorization theorem) 
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Based on SCET analysis, propose first all-order factorization formula for the 
cross section with a jet veto with R=O(1):

Note close structural similarity with qT resummation formula!

All-order factorization theorem

J
J J

J J
J

J

H

 Becher, MN: 1205.3806

convolution variables, which were shared with the jet and soft functions in the factorization
theorem. After integration over these variables, the resulting dependence on the hard scale
can be quite complicated (see in particular the discussion in [42]). In the present case, on the
other hand, the anomaly leads to an extra term in the cross section which, at fixed pvetoT , is a
pure power of mH .

2.4 Short-distance expansion of the beam-jet function

For the final factorization step, we now use that in practice the jet veto is much larger than the
scale ΛQCD governing non-perturbative hadronic effects in QCD. It is thus possible to calculate
the physics associated with pvetoT in perturbation theory, and to relate the refactorized beam-jet

function Bg S
1/2
g to conventional PDFs [34, 43]. We write this relation in the form

Bg(ξ, p
veto
T , µ)S1/2

g (pvetoT , pvetoT , µ) =
∑

i=g,q,q̄

∫ 1

ξ

dz

z
Ig←i(z, p

veto
T , µ)φi/P (ξ/z, µ) , (29)

which is valid up to hadronic corrections suppressed by powers of ΛQCD/pvetoT . By means of
(27) and (29), the cross section in (16) can now be expressed in the final form

dσ(pvetoT )

dy
= σ0(µ)C

2
t (m

2
t , µ)

∣∣CS(−m2
H , µ)

∣∣2
(
mH

pvetoT

)−2Fgg(pvetoT ,µ)

(30)

×
∑

i,j

∫ 1

ξ1

dz1
z1

∫ 1

ξ2

dz2
z2

Ig←i(z1, p
veto
T , µ) Ig←j(z2, p

veto
T , µ)φi/P (ξ1/z1, µ)φj/P (ξ2/z2, µ) ,

where the sums over i, j extend over all flavors of partons (gluons, quarks, and anti-quarks).
In the above factorization theorem, the dependence on the two disparate scales mH and
pvetoT # mH is completely explicit. Large logarithms of their ratio can be resummed by
choosing the factorization scale around the value of the jet veto, µ ∼ pvetoT . With such a
choice, the functions Fgg and Ig←i have well-behaved perturbative expansions free of large
logarithms. Explicit expressions for these functions will be presented in the next section.
Large logarithms of mH/pvetoT are contained in the anomaly term (in exponentiated form) and
in the short-distance matching coefficients Ct and CS, whose expressions are known at NNLO
in RG-improved perturbation theory. They are collected in the appendix.

A particularly nice formula is obtained after we integrate the differential cross section over
rapidity. It reads

σ(pvetoT ) = σ0(µ)C
2
t (m

2
t , µ)

∣∣CS(−m2
H , µ)

∣∣2
(
mH

pvetoT

)−2Fgg(pvetoT ,µ)

×
∑

i,j=g,q

∫ 1

τ

dz

z
IIij(z, p

veto
T , µ) ffij(τ/z, µ) ,

(31)

where the Mellin convolution IIij ≡ Ig←i ⊗ Ig←j of two kernel functions is defined as

IIij(z, p
veto
T , µ) =

∫ 1

z

du

u
Ig←i(u, p

veto
T , µ) Ig←j(z/u, p

veto
T , µ) ; i, j = g, q , (32)

11

anomalous mH dependence is a 
pure power in pT space
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Ingredients required for resummation at NNLL order:  

• Ct and CS at two-loop order in RG-improved perturbation theory         
(known to three loops)

• one-loop collinear kernel functions: 

• two-loop anomaly coefficient:

All-order factorization theorem

 Becher, MN: 1205.3806

3 Resummation at NNLL order

At NNLL order, the functions Fgg and Ig←i entering the factorization formulae (28) and (29)
are closely related to corresponding quantities entering the resummed cross section for Higgs
production at small transverse momentum [26, 32]. For a consistent treatment at NNLL order,
we require the anomaly exponent Fgg at two-loop order, while the one-loop expressions for the
kernel functions Ig←i suffice.

At two-loop order, the solution to the first evolution equation in (31) reads

Fgg(p
veto
T , µ) = as ΓA

0 L⊥ + a2
s

(

ΓA
0 β0

L2
⊥

2
+ ΓA

1 L⊥ + dveto
2

)

; L⊥ = 2 ln
µ

pveto
T

, (32)

where as ≡ αs(µ)/(4π), ΓA
0 = 4CA and ΓA

1 =
(

268
9 − 4π2

3

)

C2
A − 80

9 CATF nf are the one- and
two-loop coefficients of the cusp anomalous dimension, and β0 = 11

3 CA − 4
3 TFnf denotes the

one-loop coefficient of the β function. The constant term dveto
2 is independent of the jet veto

pveto
T but in general will depend on the jet algorithm. At one-loop order, the solution to the

second evolution equation in (31) can be written as

Ig←i(z, p
veto
T , µ) = δ(1 − z) δgi

[

1 + as

(

ΓA
0

L2
⊥

4
− γg

0 L⊥

)]

+ as

[

−P(1)
g←i(z)

L⊥

2
+ Rg←i(z)

]

,

(33)
where γg

0 = −β0,

P(1)
g←g(z) = 8CA

[

z

(1 − z)+

+
1 − z

z
+ z(1 − z)

]

+ 2β0 δ(1 − z) ,

P(1)
g←q(z) = 4CF

1 + (1 − z)2

z

(34)

are the one-loop splitting functions.
The calculation of the kernel functions at one-loop order proceeds in close analogy to the

calculation of the corresponding functions entering in the qT resummation for Drell-Yan or
Higgs production, which was performed in the SCET approach in [26, 32], and indeed the
above notation matches that used in these papers. The relevant Feynman graphs are shown
in Figure 1. Since at this order only a single parton line is cut (corresponding to one-particle
states X), the jet veto is trivially implemented as n upper cut on the transverse momentum of
that parton. The results of our calculation agree with the above relations, which were derived
from the corresponding evolution equations. For the remainder functions in (33), we obtain

Rg←g(z) = −CA
π2

6
δ(1 − z) , Rg←q(z) = 2CFz . (35)

The soft function S vanishes at one-loop order (like int he case of qT resummation), but it is
expected to be non-zero in higher orders, where the jet veto imposes non-trivial phase-space
constraints. The two-loop constant dveto

2 in (32) can not be determined from our one-loop
analysis. It accounts for genuine two-loop effects and it therefore expected to differ from the
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while ffij are flavor-singlet parton luminosity functions, given by ffgg = φg/P ⊗ φg/P , ffgq =
φg/P ⊗

∑
q

(
φq/P + φq̄/P

)
, etc.

To complete our discussion, we present the RG equations obeyed by the various component
functions in (30). The evolution equation for the Wilson coefficient Ct was first given in [24],
while that for CS can be found, e.g., in [7]. For completeness, we list the corresponding RG
equations in the appendix. The evolution equations for the functions Fgg and Ig←i then follow
from the scale invariance of the cross section. In analogy with our discussion in [23], we obtain

d

d lnµ
Fgg(p

veto
T , µ) = 2ΓA

cusp(µ) ,

d

d lnµ
Ig←i(z, p

veto
T , µ) =

[
2ΓA

cusp(µ) ln
µ

pvetoT

− 2γg(µ)
]
Ig←i(z, p

veto
T , µ)

−
∑

j

∫ 1

z

du

u
Ig←j(u, p

veto
T , µ)Pj←i(z/u, µ) ,

(33)

where Pj←i are the usual DGLAP splitting functions.

3 Resummation at NNLL order

For a consistent treatment at NLO in RG-improved perturbation theory, we require the
anomaly exponent Fgg at two-loop order, while the one-loop expressions for the kernel func-
tions Ig←i suffice. Up to O(α2

s), the general solution to the first evolution equation in (33)
reads [23]

Fgg(p
veto
T , µ) = as

(
ΓA
0 L⊥ + dveto1

)
+ a2s

(
ΓA
0 β0

L2
⊥

2
+ ΓA

1 L⊥ + dveto2

)
; L⊥ = 2 ln

µ

pvetoT

, (34)

where as ≡ αs(µ)/(4π), ΓA
0 = 4CA and ΓA

1 =
(
268
9 − 4π2

3

)
C2

A − 80
9 CATFnf are the one- and

two-loop coefficients of the cusp anomalous dimension, and β0 =
11
3 CA− 4

3 TFnf . The constant
terms dveto1 and dveto2 are independent of the jet veto pvetoT but in general can depend on the jet
algorithm. At one-loop order, the solution to the second evolution equation in (33) can be
written as [23]

Ig←i(z, p
veto
T , µ) = δ(1− z) δgi

[
1 + as

(
ΓA
0

L2
⊥

4
− γg

0 L⊥

)]
+ as

[
−P(1)

g←i(z)
L⊥
2

+Rg←i(z)

]
,

(35)
where γg

0 = −β0,

P(1)
g←g(z) = 8CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+ 2β0 δ(1− z) ,

P(1)
g←q(z) = 4CF

1 + (1− z)2

z

(36)
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only dependence on jet radius 
parameter R at NNLL order

vanishes!



Determination of anomaly coefficient d2veto:  

• matching our formula with NNLL result of BMSZ                                   
yields:

  with: 

• originally we had an extra constant term in the above relation, which 
appeared because we had incorrectly assumed that the BMSZ formula still 
holds in the limit R→∞

We have now re-derived the expression for d2veto from a two-loop calculation 
in SCET, finding complete agreement with the BMSZ formula !

All-order factorization theorem

at two-loop order in perturbation theory, finding that

σ(pvetoT )

σ0(µ)

∣∣∣
2−loop

= 64CA a2s

[
f(R) ln

mH

pvetoT

+ . . .

]
, (38)

where the dots represent R-independent terms and other, possibly R-dependent terms that
are not enhanced by the large logarithm ln(mH/pvetoT ). They observed that the function f(R)
has a smooth behavior in the limit where R → ∞ and adopted a normalization in which it
vanishes like 1/R in this limit [45]. For very large R, the jet clustering algorithm combines
all particles into a single jet, since dij → 0 in (4). The jet veto then implies an upper bound
on the vector sum of the transverse momenta of all particles, which is equivalent to a bound
on the transverse momentum of the Higgs boson. Assuming that the formalism of [17] is still
valid in the limit of very large R, we can then match the R-dependent two-loop terms obtained
in this paper with the ones following from (31) and from the results obtained in our previous
work [23, 44] for the transverse-momentum spectrum of the Higgs boson. It has recently been
shown, however, that there exist some N3LL terms of order a2s R, which for R ! ln(mH/pvetoT )
are promoted to NNLL terms of order a2s ln(mH/pvetoT ) [46]. The limit R → ∞ is therefore
subtle in that one needs to include these additional terms in the matching relation.1 When
this is done, we obtain

dveto2 = dg2 − 8ΓA
0 f(R) , (39)

or equivalently
dveto2

CA
=

(
808

27
− 28ζ3

)
CA −

224

27
TFnf − 32f(R) , (40)

where f(R) vanishes for R → ∞. For realistic values R < 1, this function can be very well
approximated by the expansion [17]

f(R) = − (1.0963CA + 0.1768 TFnf) lnR + (0.6072CA − 0.0308 TFnf)

− (0.5585CA − 0.0221 TFnf )R
2 + (0.0399CA − 0.0004 TFnf )R

4 + . . . .
(41)

It would be desirable to check expression (39) with an explicit calculation of the coefficient
dveto2 in SCET. This is left for future work. We have pointed out in [23] that the coefficient dg2
entering in the small-qT resummation for Higgs-boson production is related to the correspond-
ing coefficient dq2 for Drell-Yan production by the Casimir-scaling relation dq2/CF = dg2/CA, and
that in this ratio only maximally non-abelian color structures arise. Such a scaling relation no
longer holds in the presence of a jet veto, because the function f(R) does not share this prop-
erty. In particular, in the Drell-Yan case f(R) contains some “abelian” terms proportional to
CF [17], which give rise to a two-loop C2

F term in the exponent of the anomaly factor, indicating
that this exponent is no longer constrained by the non-abelian exponentiation theorem.

The explicit results collected in this section, along with the known NLO expressions in RG-
improved perturbation theory for the hard matching coefficients Ct in (2) and CS in (A4) and
(A5), provide the basis for the first NNLL resummation of the Higgs-boson production cross
section with a jet veto. In the context of effective field-theory calculations it is conventional

1Shall we comment that we missed this term in version 1?
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Study two different matching schemes:

• perform matching in naive way  (scheme A)
• factor out hard function H times anomaly term  (scheme B)

Since the hard function H contains the large corrections affecting the total 
cross section (time-like scalar form factor), scheme B is better motivated than 
scheme A

Caveat: numerical results are preliminary

Matching to fixed-order results

�(pvetoT ) ⇠ H(mH)
⇥
I(pvetoT )⌦ �

⇤ ⇥
I(pvetoT )⌦ �

⇤✓ m2

H

(pvetoT )2

◆�F veto

gg (pveto

T )

23

Thomas Becher, MN, Lorena Rothen (to appear)



NNLL+NLO results (scheme A)
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.
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logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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the last two panels, we observe that the scheme dependence remains uncomfortably large even
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The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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General observations:

• matching corrections ~(pTveto/mH)2 small for low pTveto values and increase for 
larger ones

• scale variations under control for not too small jet radii (R>0.6)
• larger scale dependence for smaller radii results from strong R-dependence 

of the two-loop anomaly coefficient d2veto

• in this region, clustering logarithms 
~αsn+1 lnnR should be resummed

To further reduce the scale variations 
at small R, one should extend the 
analysis to NNNLL+NNLO order                 
(in progress)

• study NNLO matching as one 
important part of such an analysis

huge !
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Figure 4: For each scheme: NLO compared to NNLO (densely striped). Naive Matching )
Green. Hard function factored out ) Red. Hard function at µ = pvetoT factored out ) Blue.
Anomaly as well ) Purple thick.
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NNLL+NLO vs.
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables
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Comparison to other work
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• NNLL formula of Banfi, Monni, Salam, Zanderighi: 1206.4998 is 
fully consistent with our all-order factorization theorem; both 
general structure and explicit computations of ingredients agree

• Tackmann, Walsh, Zuberi: 1206.4312 (TWZ) use a different 
formalism (“rapidity renormalization group”) but obtain the same 
factorization formula

• however, they argued that the factorization formula is of little use, 
since it only holds at parametrically small R≪1, where 
clustering logs must be resummed

• TWZ claim that soft-collinear mixing terms spoil factorization 
starting at NNLL order (later modified to “beyond NNLL order”)



Soft-collinear mixing terms ?
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Figure 1. The mass-shell hyperbolae showing the distinction between the di↵erent sectors [5]. The
separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft
sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences
arising from the collinear sector.

Let us now see how factorization of the soft from collinear modes leads to rapidity diver-

gences. Consider the full theory one loop vertex correction. The relevant scalar integral is

given by

If =

Z

[dnk]
1

(k2 � M2)

1

(k2 � n · kn̄ · p1 + i✏)

1

(k2 � n̄ · kn · p2 � i✏)
(4.3)

This integral is finite in UV as well as the IR. In the e↵ective theory there are three

contributions. A soft integral coming from taking the limit kµ ! (M, M, M)

IS =

Z

[dnk]
1

(k2 � M2)

1

(�n · k + i✏)

1

(�n̄ · k + i✏)
(4.4)

and two collinear integrals (In, In̄) of the form

In =

Z

[dnk]
1

(k2 � M2)

1

(k2 � n · k n̄ · p1 + i✏)

1

(�n̄ · k + i✏)
. (4.5)

Given that the full theory graph is IR finite, so must be the sum of the e↵ective theory

graphs. Let us consider the soft graph integrating over k?.

IS ⇠
Z

[d2k](n · k n̄ · k � M2)�2✏ 1

(�n · k + i✏)

1

(�n̄ · k + i✏)

(4.6)

We see that the relevant region of phase space lives on the hyperbola n · k n̄ · k ⇠ M2, shown

in figure 1. O↵ the hyperbola the integral becomes scaleless. Given this restriction, we note

that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or zero. These

divergences are not regulated by dimensional regularization and correspond to the rapidity

divergences that arise when the soft integral overlaps with the two collinear rapidity regions.

This is illustrated in figure (4). On the other hand, if we consider the collinear n diagram

– 9 –

We find that soft-collinear mixing contributions obtained without 
performing the multi-pole expansion precisely cancel against these 
zero-bin subtraction terms !

Have confirmed this by explicit two-loop calculations

• In dimensional regularization, soft 
and collinear contributions are 
integrated over full phase space

• Avoid double counting by multi-pole 
expanding the integrands, or by 
performing “zero-bin” subtractions 
of overlap contributions



Conclusions

SCET provides efficient tools for addressing difficult collider-
physics problems: systematic factorization and resummation

Many applications exist for Drell-Yan processes (production of  
Z, W, H bosons) and top-quark pair production

In several cases, SCET methods have pushed the limits of what 
has been accomplished using traditional techniques

Collinear anomaly is an important ingredient to factorization 
analyses for observables sensitive to transverse momenta 

Have developed a consistent framework for qT resummation and 
jet-veto cross sections for pp→(colorless bosons)+0 jets
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