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• ATLAS and CMS have discovered a new boson likely to be 
the Higgs boson.

Introduction

• Next goal: improve theoretical prediction by moving to 
N3LO!

➡ Question whether this is the SM Higgs boson is still 
open.

• Most important Higgs production mechanism at the 
LHC is gluon fusion.
➡ Inclusive production cross section known to NNLO 

in QCD.



• The gluon fusion cross section at NNLO:

Outline

• First steps towards N3LO:

➡ ‘Reverse-unitarity’ approach for inclusive phase space 
integrals.

➡ The NNLO cross section to higher orders 
dimensional regularization.

➡ The triple real emission contribution in the soft 
approximation.



The gluon fusion 
cross section



• The dominant Higgs production mechanism 
at the LHC is gluon fusion.

The Gluon fusion cross section

➡ Loop-induced process.

• For a light Higgs boson, the top quark can be integrated 
out.

• As a result, we obtain a dimension five operator describing 
a tree-level coupling of the gluons to the Higgs boson:

L = LQCD,5 �
1
4v

C1 H Ga
µ⌫ Gµ⌫

a

• In the rest of the talk, I will only concentrate on the 
effective theory.



• The gluon fusion cross section is given in perturbation 
theory by

The Gluon fusion cross section

• The (partonic) cross section depends up to an overall scale 
only on the ratio

�(p p! H + X) = z
X

ij

[fi ⌦ fj ⌦ (�̂ij(x)/x)] (z)

z =
m2

s

• The partonic cross section can be expanded into a 
perturbative series

�̂(z) = �̂LO(z) + ↵s �̂NLO(z) + ↵2
s �̂NNLO(z) + . . .



Higher-order computations

• LO: 
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Higher-order computations

• LO: 

• + convolution with PDFs. ➡ More on this later.

• NLO: 

RealVirtual

• NNLO: 

Double virtual Real virtual Double real

• N3LO: 

Triple virtual Real real virtual

Real double virtual Triple real



Unitarity
• Optical theorem:

➡ Discontinuities of loop amplitudes are phase space 
integrals.

=
Z

d�Im

• Discontinuities of loop integrals are given by Cutkosky’s 
rule: 

1
p2 �m2 + i"

! �+(p2 �m2) = �(p2 �m2) ✓(p0)

• These relations are at the heart to all the unitarity-based 
approaches to loop computations.



‘Reverse-unitarity’
• Optical theorem:

=
Z

d�Im

• We can read the optical theorem ‘backwards’ and write 
our inclusive phase space integrals as unitarity cuts of loop 
integrals.

➡ Makes them accessible to all the technology developed for 
loop computations! [Anastasiou, Melnikov]

➡ Integration-by-parts.

➡ Master integrals.

➡ Differential equations.



‘Reverse-unitarity’ @ NNLO
• At NNLO, the cross section can be reduced to 29 master 

integrals:
➡ 5 double virtual integrals (~form factor).

➡ 6 real-virtual integrals.

➡ 18 double real integrals.
[Anastasiou, Melnikov]

• The real-virtual and double real master integrals can be 
evaluated analytically using differential equations.

[Gonsalves; Kramer, Lampe; 
Gehrmann, Huber, Maître]

[Anastasiou, Melnikov]
• Evaluating all master integral up to          yields the NNLO 

inclusive gluon fusion cross section.
O(✏0)

• N.B.: The same master integrals contribute to any 2-to-1 
inclusive cross section.



Towards N3LO



• Reverse-unitarity technique can also be used to compute 
N3LO cross section.
➡ There are many different building blocks.

➡ We are not there yet...

Triple virtual Real real virtual Real double virtual Triple real
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The N3LO cross section

• Purely virtual contributions at N3LO are known.

➡ 3-loop QCD form factor known.
[Baikov, Chetyrkin, Smirnov, 

Smirnov, Steinhauser; Gehrmann, 
Glover, Huber, Ikizlerli, Studerus]

➡ 1 & 2-loop QCD form factors known to all orders 
in dimensional regularization. [Gonsalves; Kramer, Lampe; 

Gehrmann, Huber, Maître]



• Initial-state collinear divergences must be absorbed into 
PDFs.

The N3LO cross section

• Counterterms are related to splitting functions.

➡ Achieved by introducing a counterterm:

[Moch, 
Vermaseren, Vogt]

where

τ =
m2

X

S
and z =

m2
X

s
, (2.2)

with S being the total center of mass energy, s the partonic center of mass energy carried by

the momenta of the incoming partons, p1 and p2, and mX the (on-shell) mass of particle X.

The bare strong coupling constant is denoted as α(0)
s , f (0)

i are the bare parton distribution

functions (PDF’s) and σ̂ij,n is the partonic cross section for X + n jets, which in turn

admits a perturbative expansion in the number of loops. σ̂ij,n may be written as a phase

space integral over the squared X + n jets amplitude as follows,

σ̂ij,n =
1

2s

∫

dΦn+1|Aij→X+n jets|2 , (2.3)

where we define the measure of the phase space volume for a massive particle X of mass

mX and n− 1 massless particles by

dΦn =
dDpX

(2π)D−1
δ+(p

2
X −m2

X)

(

n+1
∏

i=3

dDpi
(2π)D−1

δ+(p
2
i )

)

(2π)Dδ(D)(p1...n+1 − pX) , (2.4)

where

pi1...in = τi1pi1 + ...+ τinpin , τi =

{

+1 if i = 1, 2 ,

−1 if i > 2 .
(2.5)

Using this notation, the Lorentz invariants appearing in the phase space integrals are

defined through

si1..in = (pi1..in)
2 . (2.6)

While the inclusive cross section σX must obviously be finite order by order in pertur-

bation theory, the individual pieces contributing to a given loop order are divergent. Final

state infrared (IR) divergences cancel mutually between the real and virtual corrections,

whereas ultraviolet (UV) and initial-state IR divergences have to be dealt with by replacing

the bare coupling and PDF’s by their renormalized counterparts, which requires the in-

troduction of explicit counterterms proportional to poles in the dimensional regularization

parameter ε multiplying lower order coefficients of the cross sections. As an example, if σ̂(!)

denotes the '-th order correction to the cross section, the N3LO UV/PDF counterterms

can schematically be written as

δσ̂(3) ∼
1

ε
C1 × σ̂(2) +

(

1

ε2
C2 +

1

ε
C3

)

× σ̂(1) +

(

1

ε3
C4 +

1

ε2
C5 +

1

ε
C6

)

× σ̂(0) , (2.7)

where the × may indicate a convolution in the case of the PDF counterterms. As a

consequence, the poles of the counterterms produce finite contributions to the N3LO cross

section from the higher orders in the ε expansion of σ̂(!).

The aim of this paper is to provide the NNLO master integrals which are required

in σ̂(2) to one order higher in the ε expansion. At this order in perturbation theory three

different contributions need to be taken into account. As an example, the NNLO correction

to the partonic cross section for gg → H gets contributions from the following three types

of interference diagrams,

– 2 –

➡ Three-loop splitting functions are known.
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➡ Three-loop splitting functions are known.

• Pole requires the knowledge of the NNLO cross to one 
order higher in the dimensional regulator.
➡ It is enough to solve the differential equations 

for the master integrals to one order higher.

[Pak, Rogal, 
Steinhauser; 

Anastasiou, Buehler, 
CD, Herzog]
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➡ Three-loop splitting functions are known.

• Pole requires the knowledge of the NNLO cross to one 
order higher in the dimensional regulator.
➡ It is enough to solve the differential equations 

for the master integrals to one order higher.
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CD, Herzog]

• Convolution with splitting functions was recently 
performed. [Höschele, Hoff, Pak, Steinhauser, Ueda]



Soft limit @ NNLO

• Solving the differential equation for the master integrals 
requires the knowledge of an initial condition.

• Two natural candidates:

• The NNLO master integrals can be evaluated to all orders 
in dimensional regularization in the soft limit.

➡                     massless limit - changes singularity structure.z =
m2

s
! 0

z =
m2

s
! 1➡                     soft limit (threshold).



Soft limit @ NNLO

• Solving the differential equation for the master integrals 
requires the knowledge of an initial condition.

• Two natural candidates:

• The NNLO master integrals can be evaluated to all orders 
in dimensional regularization in the soft limit.

➡                     massless limit - changes singularity structure.z =
m2

s
! 0

z =
m2

s
! 1➡                     soft limit (threshold).

• Surprise: 17 out of 18 double real master integrals are 
proportional to the phase space volume in the soft limit!



Soft limit @ NNLO

Changing variables to y = 1+cos θ13
2 , eq. (4.33) may be written as

P(ε)XS
18 =

(4π)−3+2ε

(1− z)1+4ε

Γ(−2ε)

ε2Γ(−4ε)

∫ 1

0
dyy−1−ε(1− y)−ε

2F1 (1, 1; 1 − ε; y)

=
1

2

(4π)−3+2ε

(1− z)1+4ε

Γ(−ε)2

ε2Γ(−4ε)
3F2 (1, 1,−ε; 1 − ε, 1− 2ε; 1) , (4.34)

where we used the recursive definition of the pFq function. Hence we arrive at expressions

valid to all orders in ε for the soft limits of all the double-real master integrals. We observe

that in all cases, except for XS
18, the results are proportional to the soft limit of the phase

space volume,

XS
1 (z, ε) = (1− z)3−4εΓ(2− 2ε)2

Γ(4− 4ε)
, (4.35)

the constant of proportionality being a rational function of z and ε. We therefore define

XS
i (z, ε) = Si(z, ε)X

S
1 (z, ε) . (4.36)

In this normalization the results for the soft limits of the master integrals read

S1(z, ε) = S7(z, ε) = S11a(z, ε) = 1 , (4.37)

S2(z, ε) =
2(3 − 4ε)

(1− 2ε) (1− z)2
, (4.38)

S3(z, ε) = S8(z, ε) = S9(z, ε) = S10(z, ε) = 2
(1 − 2ε)(3 − 4ε)

ε2(1− z)2
, (4.39)

S4(z, ε) = S5(z, ε) = −2
(1− 2ε) (3− 4ε) (1− 4ε)

ε3(1− z)4
, (4.40)

S6(z, ε) = −8
(1− 2ε) (3− 4ε) (1− 4ε)

ε3(1− z)4
, (4.41)

S12(z, ε) =
1

2
, (4.42)

S13(z, ε) = −
3− 4ε

(1− 2ε) (1 − z)
, (4.43)

S14(z, ε) =
3− 4ε

ε (1 − z)
, (4.44)

S15(z, ε) =
(1− 2ε)(3− 4ε)

ε2(1− z)2
, (4.45)

S16(z, ε) =
(1− 2ε) (3− 4ε) (1− 4ε)

ε3(1− z)3
, (4.46)

S17(z, ε) = −2
(1− 2ε) (3− 4ε) (1− 4ε)

ε3(1− z)4
, (4.47)

– 11 –
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valid to all orders in ε for the soft limits of all the double-real master integrals. We observe

that in all cases, except for XS
18, the results are proportional to the soft limit of the phase

space volume,

XS
1 (z, ε) = (1− z)3−4εΓ(2− 2ε)2

Γ(4− 4ε)
, (4.35)

the constant of proportionality being a rational function of z and ε. We therefore define

XS
i (z, ε) = Si(z, ε)X

S
1 (z, ε) . (4.36)

In this normalization the results for the soft limits of the master integrals read

S1(z, ε) = S7(z, ε) = S11a(z, ε) = 1 , (4.37)

S2(z, ε) =
2(3 − 4ε)

(1− 2ε) (1− z)2
, (4.38)

S3(z, ε) = S8(z, ε) = S9(z, ε) = S10(z, ε) = 2
(1 − 2ε)(3 − 4ε)

ε2(1− z)2
, (4.39)

S4(z, ε) = S5(z, ε) = −2
(1− 2ε) (3− 4ε) (1− 4ε)

ε3(1− z)4
, (4.40)

S6(z, ε) = −8
(1− 2ε) (3− 4ε) (1− 4ε)

ε3(1− z)4
, (4.41)

S12(z, ε) =
1

2
, (4.42)

S13(z, ε) = −
3− 4ε

(1− 2ε) (1 − z)
, (4.43)

S14(z, ε) =
3− 4ε

ε (1 − z)
, (4.44)

S15(z, ε) =
(1− 2ε)(3− 4ε)

ε2(1− z)2
, (4.45)

S16(z, ε) =
(1− 2ε) (3− 4ε) (1− 4ε)

ε3(1− z)3
, (4.46)

S17(z, ε) = −2
(1− 2ε) (3− 4ε) (1− 4ε)

ε3(1− z)4
, (4.47)
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XS
18(z, ✏) = �4 �(2� 2✏)2

✏3 �(1� 4✏) 3F2(1, 1,�✏; 1� ✏, 1� 2✏; 1)

• Standard conjectures about the structure of multiple zeta values 
imply that the hypergeometric function cannot be reduced to 
gamma functions!

• Coefficients of the soft phase space volume are reminiscent of 
IBP identities.

[Anastasiou, Buehler, CD, Herzog]



Soft limit @ NNLO

• Explanation: In the soft limit the number of real emission 
master integrals drops dramatically!

• Combine IBP identities with threshold expansion, and solve 
IBP identities only in this limit.
➡ Technically speaking: expansion by regions, but 

only keep the leading term in the soft region.



Soft limit @ NNLO

• Explanation: In the soft limit the number of real emission 
master integrals drops dramatically!

• Combine IBP identities with threshold expansion, and solve 
IBP identities only in this limit.
➡ Technically speaking: expansion by regions, but 

only keep the leading term in the soft region.

• If we rerun the IBP reduction taking into account the threshold 
expansion, all real emission phase space integral reduce to only 
two master integrals.
➡ The coefficients coming out of the IBP reduction 

are those shown in the previous slide!

• Extremely useful at N3LO, where the number of real emission 
master integrals is (expected to be) quite large. 



Triple real soft emission

• Next step towards N3LO: The cross section in the soft limit.

• We started by investigating the soft limit of the triple real phase 
space integrals.

➡ Physically important (threshold).

➡ Initial condition for differential equations away from 
threshold.

• IBP reduction reveals 9 different master integrals in the soft 
limit. [Anastasiou, Dulat, CD, Mistlberger]



Triple real soft emission
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Triple real soft emission

• The master integrals can be computed analytically.

➡ There is an algorithmic way to express the soft master 
integrals as angular integrals, for which a Mellin-Barnes 
(MB) representation can be obtained.

obtain,

F5 = z̄−4

[

− 15

2ε
ζ2 +

171

4
ζ2 − 60ζ3 + ε

(
−297

4
ζ2 + 342ζ3 −

1155

4
ζ4

)

+ ε2
(
81

2
ζ2 − 45ζ3ζ2 − 594ζ3 +

13167

8
ζ4 −

2145

2
ζ5

)

+ ε3
(
−180ζ23 +

513

2
ζ2ζ3 + 324 ζ3 −

22869

8
ζ4 +

24453

4
ζ5 −

32055

8
ζ6

)
+O(ε4)

]

.

(10.3)

11. The master integral F8

We proceed in the by now familiar, i.e., we first introduce two MB integrations in order to

get rid of the sums in the denominator, followed by the energies and angles parametrization.

The energies are integrated out in terms of Γ functions, and the angular integrations over

the gluons 4 and 5 are performed using eq. (4.12). At this this stage we have three

integrations left to do: the two MB integrations and the integral over cos θ3 = 2y − 1

F8 =
Γ(6− 6ε)Γ(−ε)2

64(1 − z)6Γ(1− ε)6Γ(−6ε)

∫ +i∞

−i∞

dz1dz2
(2πi)2

∫ 1

0
dy yz2−ε (1− y)z1−ε Γ (−z1)Γ (z1 + 1)

× Γ (−z2)Γ (z2 + 1)Γ (−ε− z1)Γ (−ε− z2)Γ (−2ε+ z1 + z2)

× 2F1 (1, z1 + 1; 1 − ε; y) 2F1 (1, z2 + 1; 1− ε; 1− y) .

(11.1)

In order to proceed, we first apply the identity

2F1(a, b; c;x) = (1− x)−b
2F1

(
c− a, b; c;

x

x− 1

)
(11.2)

and then insert an MB representation for each hypergeometric function in the integrand of

eq. (11.1). The reason to apply eq. (11.2) before inserting the MB integrations comes from

the fact that in this way one of the four MB integrations can be performed using Barnes’

first lemma. We then arrive at the following three-fold MB representation for F8,

F8 =
Γ(6− 6ε)

64z̄6Γ(1− ε)4Γ(−6ε)

∫ +i∞

−i∞

dz2dz3dz4
(2πi)3

Γ (−z2)Γ (−z3)Γ (−z4)

× Γ (z3 + 1)Γ (z2 − 2ε)Γ (−z2 − z4)Γ (z2 + z4 + 1)Γ (−ε− z3)Γ (z3 − ε)

× Γ (−2ε+ z2 − z3)Γ (−ε− z4)Γ (z4 − ε)

Γ (−2ε+ z2 + 1)Γ (−2ε− z3 − z4)
.

(11.3)

In the rest of this section we show how we can compute a Laurent expansion for this

integral. We proceed in the standard way and resolve singularities in ε. At the end of

this procedure, we have a collection of MB integrals of dimensionality at most three with

integration contours that are straight vertical lines. These integrals can then be safely

expanded in ε under the integration sign. In the following we discuss the computation of

the two and three-fold integrals.
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[Van Neerven, Somogyi]

[Anastasiou, Dulat, CD, Mistlberger]
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)
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and then insert an MB representation for each hypergeometric function in the integrand of

eq. (11.1). The reason to apply eq. (11.2) before inserting the MB integrations comes from

the fact that in this way one of the four MB integrations can be performed using Barnes’

first lemma. We then arrive at the following three-fold MB representation for F8,
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In the rest of this section we show how we can compute a Laurent expansion for this

integral. We proceed in the standard way and resolve singularities in ε. At the end of

this procedure, we have a collection of MB integrals of dimensionality at most three with

integration contours that are straight vertical lines. These integrals can then be safely
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[Van Neerven, Somogyi]

• An MB representation is very useful, but need to compute them 
analytically...

[Anastasiou, Dulat, CD, Mistlberger]



Triple real soft emission
• In some cases the MB integrations can be done in closed form, 

or by closing contours and summing up residues.

• In other cases the evaluation of the MB integrals is more 
‘tricky’...

6. The master integral F2

The integrand of the master integral F2 involves a sum of two-particle invariants in the

denominator. We replace the sum by a product to the price of introducing a MB integration

via eq. (4.14),

F2 =

∫ +i∞

−i∞

dz1
2πi

Γ (−z1)Γ (z1 + 1)

∫
dΦS

4

ΦS
4

1

sz1+1
13 s−z1

15 s34
. (6.1)

The phase space integral is now in the form (4.6), and so we can introduce the energies

and angles parametrization and integrate out the energies and the angular integrations.

This results in the following two-fold integral representation for F2, which is mixed MB

and Euler-type,

F2 = − z̄−3

2

Γ(6− 6ε)Γ(1 − 2ε)Γ(−ε)
Γ(3− 6ε)Γ(1− ε)5

∫ +i∞

−i∞

dz1
2πi

Γ (−z1)Γ (z1 + 1)Γ (−ε− z1)

× Γ (1− ε+ z1)

∫ 1

0
dy y−ε (1− y)−ε

2F1 (1, z1 + 1; 1 − ε; y) .

(6.2)

The Euler integral over y could immediately be performed in terms of a 3F2 function,

but after that we still need to integrate over the MB parameter z1. We therefore prefer

not to perform the integration over y, but we rather insert the MB representation for the

hypergeometric function in the integrand

pFq(a1, . . . , ap; b1, . . . , bq;x) =

∫ +i∞

−i∞

dz

2πi
(−x)z Γ(−z)

[
p∏

i=1

Γ(ai + z)

Γ(ai)

] [
q∏

i=1

Γ(bi)

Γ(bi + z)

]

.

(6.3)

The integral over y now evaluates to a Beta function, and we are left with the following

two-dimensional MB integral

F2 = − Γ(6− 6ε)Γ(1 − 2ε)Γ(−ε)
8(1− z)3Γ(3− 6ε)Γ(1− ε)3

∫ +i∞

−i∞

dz1dz2
(2πi)2

(−1)z2 Γ (−z1)Γ (−z2)

× Γ (z2 + 1)Γ (z1 + z2 + 1)Γ (−ε− z1)Γ (1− ε+ z1)

Γ (2− 2ε+ z2)
.

(6.4)

The integral over z1 is easily performed using Barnes’ first lemma, and the remaining one-

fold MB integral can easily be recognized as a 3F2 function, eq. (6.4). We finally obtain

the following result for the master integral F2,

F2 =
Γ(6− 6ε)Γ(1 − 2ε)2

8z̄3εΓ(3− 6ε)Γ(2 − 2ε)2 3F2(1, 1, 1 − ε; 2− 2ε, 2− 2ε; 1)

= z̄−3

[
15

2ε
ζ2 −

141

4
ζ2 +

105

2
ζ3 + ε

(
54ζ2 −

987

4
ζ3 + 225ζ4

)

+ ε2
(
60ζ3ζ2 − 27ζ2 + 378ζ3 −

2115

2
ζ4 +

1395

2
ζ5

)

+ ε3
(
210ζ23 − 282ζ2ζ3 − 189ζ3 + 1620 ζ4 −

13113

4
ζ5 +

4815

2
ζ6

)
+O(ε4)

]

.

(6.5)
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11.3 The result for F8

We have now computed all the two and three-fold integrals contributing to F8. The re-

maining one-fold integrals are trivial, and we obtain

F8 =
1

(1− z)6

[

− 15

16ε5
+

411

32ε4
+

1

ε3

(
5π2

8
− 2025

32

)
+

1

ε2

(
75

2
ζ3 +

2295

16
− 137π2

16

)

+
1

ε

(
−2055

4
ζ3 −

1215

8
+

675π2

16
+

37π4

16

)

+
10125

4
ζ3 +

35π2

4
ζ3 + 810ζ5 +

243

4
− 765π2

8
− 5069π4

160

+ ε

(
−11475

2
ζ3 −

959π2

8
ζ3 +

735

4
ζ23 − 11097ζ5 +

405π2

4
+

4995π4

32
+

865π6

252

)
+O(ε2)

]

.

(11.33)

A. From MB integral to parametric integral

In this appendix we describe how one can derive an Euler-type integral from a Mellin-

Barnes integral with balanced integrand. An MB integral is said to be balanced if for each

integration variable zi the number of Γ functions of the form Γ(. . . − zi) is equal to the

number of Γ functions of the form Γ(. . . + zi). More precisely, the integral

∫ +i∞

−i∞

dzi
2πi

n+∏

k1

Γ(ak1 + zi)
αk1

n
−∏

k2

Γ(bk2 − zi)
βk2 (A.1)

is called balanced if
∑n+

k1
αk1 =

∑n
−

k2
βk2 . We assume in the following that the contours

are straight vertical lines such that the real parts of the arguments of all the Γ functions

are positive1. In that case we can always derive an Euler-type integral representation for

the MB integral. We start by noting that if an integral is balanced, then we can always

express its integrand as a product of Beta functions,

B(x, y) =

∫
∞

0
dt tx−1 (1 + t)−x−y . (A.2)

The integral (A.2) is convergent whenever Re(x),Re(y) > 0. It is easy to convince oneself

that this condition is satisfied whenever the real parts of all arguments of the Γ functions

were positive in the original MB integral. We can therefore replace each Beta function by

its integral representation (A.2) in the integrand of the MB integral and, because all the

integral are convergent, we can exchange the MB integrations and the integrations coming

from the Beta functions. This leaves us with an integral of the form

∫
∞

0

(
N∏

n=1

dti

)

R0(t)Rε(t)
ε
∫ +i∞

−i∞

M∏

m=1

dzi
2πi

Ri(t
zi) , (A.3)

1Note that we might need to require ε to be finite for such a contour to exist.
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[Anastasiou, Dulat, CD, Mistlberger]



Triple real soft emission

• We were not able to find all-order results for all the master 
integral, but we have obtained a Laurent series up to weight 6 
for all 9 masters.

• We have reduced the tree-level amplitude H + 5g in the soft 
limit to a combination of the 9 master integrals.

• New non-trivial building block needed for the full N3LO 
evaluation of the gluon fusion cross section!



Conclusion
• The inclusive gluon fusion cross section might get within 

reach in the next few years!

• Next goals:

➡ Full cross section at N3LO in the soft limit.

➡ Use soft limit as initial condition for general kinematics.

[Baikov, Chetyrkin, Smirnov, 
Smirnov, Steinhauser; Gehrmann, 
Glover, Huber, Ikizlerli, Studerus]

[Pak, Rogal, Steinhauser; 
Anastasiou, Buehler, CD, Herzog]

[Höschele, Hoff, Pak, 
Steinhauser, Ueda]

[Anastasiou, Dulat, CD, Mistlberger]

➡ Triple virtuals.

➡ NNLO cross section to higher orders.

➡ Convolution with splitting functions.

➡ Triple real soft emission.


