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Introduction

® ATLAS and CMS have discovered a new boson likely to be
the Higgs boson.

= Question whether this 1s the SM Higgs boson 1s still
open.

® Most important Higgs production mechanism at the
LHC 1s gluon fusion.

= [nclusive production cross section known to NNLO

in QCD.

® Next goal: improve theoretical prediction by moving to

N3LO!



Outhne

® The gluon ftusion cross section at NNLO:

= ‘Reverse-unitarity’ approach for inclusive phase space
integrals.

® [irst steps towards N3LO:

= The NNLO cross section to higher orders

dimensional regularization.

= The triple real emission contribution in the soft
approximation.



The gluon fusion
Cross section



The Gluon fusion cross section

® The dominant Higgs production mechanism oo
at the LHC 1s gluon fusion. .> .

= [oop-induced process. 70000

® For a light Higgs boson, the top quark can be integrated
out.

® As aresult, we obtain a dimension five operator describing
a tree-level coupling of the gluons to the Higgs boson:

1 a |4
L=Locps — 4 C1HG), Gq %}

® In the rest of the talk, I will only concentrate on the
effective theory.



The Gluon fusion cross section

® The gluon fusion cross section 1s given 1n perturbation

theory by

olpp — H+X) =2 [fi®f;® (6i(x) /)] (2)
]
® The (partonic) cross section depends up to an overall scale
only on the ratio

® The partonic cross section can be expanded into a
perturbative series

6(2) =659 (2) + as 6N (2) + 2 N NECO () + ..
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Higher-order computations

‘1o “tas
e NLO:  Tmlem M

Virtual Real
® NNLO: Pmlarl  Thlaf
Double virtual Real virtual Double real

® N3LO: %@ & E%ﬁﬁg;

Triple virtual Real real virtual

Real double virtual Triple real
® - convolution with PDFs. = More on this later.



Unitarity

® Optical theorem:

Im}:z:/a@

= Discontinuities of loop amplitudes are phase space

integrals.

® Discontinuities of loop integrals are given by Cutkosky’s

rule:
1

P2 —m?2 4+ ie

> 04 (p? —m?) = 6(p* —m?) 0(p°)

® These relations are at the heart to all the unitarity-based
approaches to loop computations.



‘Reverse-unitarity’

® Optical theorem:

Im}::z:/d@

® We can read the optical theorem ‘backwards’ and write

our inclusive phase space integrals as unitarity cuts of loop
integrals.

= Makes them accessible to all the technology developed for
lOOP COmPUtatiOIlS! [ Anastasiou, Melnikov]

= [ntegration-by-parts.
= Master integrals.

= Differential equations.



‘Reverse-unitarity’ @ NNLO

® At NNLO, the cross section can be reduced to 29 master

integrals:
[ Gonsalves; Kramer, Lampe;

= 5 double virtual integrals (~form factor). "5, ~ "~ Maitre]

= 6 real-virtual integrals.
[ Anastasiou, Melnikov]

= ]8 double real integrals.

® The real-virtual and double real master integrals can be
evaluated analytically using differential equations.

® Evaluating all master integral up to O(e’) yields the NNLO

inclusive gluon fusion cross section. [Anastasiou, Melnikov]

® N.B.: The same master integrals contribute to any 2-to-1
inclusive cross section.



Towards N31.O



The N3LO cross section
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® Reverse-unitarity technique can also be used to compute
N3LO cross section.

= There are many different building blocks.

= We are not there yet...



The N3LO cross section

fofor 2]

Triple virtual Real real virtual ~ Real double virtual

Triple real

® Reverse-unitarity technique can also be used to compute
N3LO cross section.

= There are many different building blocks.

= We are not there yet...

O Purely virtual contributions at N3L.O are known.
[ Baikov, Chetyrkin, Smirnov,

- 3_100p OCD form factor known. SmirnOV, Steinhauser, Gehrmann,
7 Glover, Huber, Ikizlerli, Studerus]

= ] & 2-loop QCD form factors known to all orders

in dimensional regularization. [Gonsalves; Kramer, Lampe;
Gehrmann, Huber, Maitre]



The N3LO cross section

® Initial-state collinear divergences must be absorbed into

PDFs.

= Achieved by introducing a counterterm:
1 1 1 1 1 1
563 ~ =0y x 6@ + (—2C2 + —C3> x ¢ + <—304 + 505 + —C6> x &0)
€ € € € € €

® Counterterms are related to splitting functions. 'Moch

= Three-loop splitting functions are known. ~ Vermaseren, Vogt]
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® Pole requires the knowledge of the NNLO cross to one

order higher in the dimensional regulator.
[Pak, Rogal,

= [t 1s enough to solve the differential equations Steinhauser;
Anastasiou, Buehler,

for the master integrals to one order higher. CD, Herzog]



The N3LO cross section

Initial-state collinear divergences must be absorbed into

PDFs.

= Achieved by introducing a counterterm:
1 1 1 1 1 1
063 ~ —(C1 X 52 + <—2C2 + —C3> x M) 4 <—304 + 505 + —C'6> % 60)
€ € € € € €

Counterterms are related to splitting functions. [Moch,

= Three-loop splitting functions are known. ~ Vermaseren, Vogt]

Pole requires the knowledge of the NNLO cross to one

order higher in the dimensional regulator.
. . . . [Pak, Rogal,
= [t 1s enough to solve the differential equations Steinhauser;
Anastasiou, Buehler,

for the master integrals to one order higher. CD, Herzog]

Convolution with splitting functions was recently
performed. | Hoschele, Hoft, Pak, Steinhauser, Ueda]



Soft imit @ NNLO

® Solving the differential equation for the master integrals

requires the knowledge of an imitial condition.

® Two natural candidates:

m2

= z=——0 massless limit - changes singularity structure.

2

- :’”; .1 soft limit (threshold).

® The NNLO master integrals can be evaluated to all orders
in dimensional regularization 1n the soft limait.



Soft imit @ NINLO

® Solving the differential equation for the master integrals
requires the knowledge of an imitial condition.

® Two natural candidates:

m2

= z=——0 massless limit - changes singularity structure.

2

- :’”; .1 soft limit (threshold).

® The NNLO master integrals can be evaluated to all orders
in dimensional regularization 1n the soft limait.

® Surprise: 17 out of 18 double real master integrals are
proportional to the phase space volume 1n the soft limit!



Soft imit @ NNLO
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Soft imit @ NNLO
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Soft Iimit @ NNLO

X?(z,€) = S;(z,€) X7 (2, €) X (z,€) = (1 — 2)3_4€F(2 —2¢)°

(]
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Soft imit @ NNLO

I'(2 — 2¢)?
T(4— 4e)

X2 (z,€) = Si(z,€) X7 (2, €) X5 (2,€) = (1 — 2)3 4
2(3 — 4e)
(1—2€) (1 —2)%"
(1 — 2¢)(3 — 4e)
€2(1 — z)°

Si1(z,6) =S7(z,€) = S114(z,€) =1, So(z,€) =

SS(Z,E) — SS(Z,G) — Sg(Z,E) — 810(2,6) = 2

4T(2 — 2¢)?
e3 I'(1 — 4e)

X2 (2, €) = 5F5(1,1,—€;1 —€,1 — 2¢; 1)

[ Anastasiou, Buehler, CD, Herzog]



Soft imit @ NNLO
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[ Anastasiou, Buehler, CD, Herzog]
® Standard conjectures about the structure of multiple zeta values
imply that the hypergeometric function cannot be reduced to

gamma functions!



Soft imit @ NNLO
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e3 I'(1 — 4e)
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[ Anastasiou, Buehler, CD, Herzog]
® Standard conjectures about the structure of multiple zeta values
imply that the hypergeometric function cannot be reduced to

gamma functions!

® Coefhicients of the soft phase space volume are reminiscent of

IBP identities.



Soft imit @ NNLO

® FExplanation: In the soft limit the number of real emission
master integrals drops dramatically!

® Combine IBP identities with threshold expansion, and solve
IBP identities only 1n this limat.

= Technically speaking: expansion by regions, but
only keep the leading term 1n the soft region.



Soft limit @ NNLO

Explanation: In the soft limit the number of real emission
master integrals drops dramatically!

Combine IBP identities with threshold expansion, and solve
IBP identities only 1n this limat.

= Technically speaking: expansion by regions, but
only keep the leading term 1n the soft region.

[f we rerun the IBP reduction taking into account the threshold
expansion, all real emission phase space integral reduce to only
two master integrals.

= The coefficients coming out of the IBP reduction
are those shown 1n the previous slide!

Extremely useful at N3LLO, where the number of real emission
master integrals 1s (expected to be) quite large.



Triple real soft emission

® Next step towards N3LO: The cross section 1n the soft limit.

= Physically important (threshold).

= [nitial condition for differential equations away from

threshold.

® We started by investigating the soft limit of the triple real phase
space integrals.

® [BP reduction reveals 9 different master integrals in the soft
hmlt [ Anastasiou, Dulat, CD, Mistlberger]



Triple real soft emission
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Triple real soft emission

® The master integrals can be computed analytically.

= There 1s an algorithmic way to express the soft master
integrals as angular integrals, for which a Mellin-Barnes

(MB) representation can be obtained. [Van Neerven, Somogy1]
B ['(6 — 6e) 10 drodzzdzy
Fs = 6426T (1 — €)4T(—6e) /_ o (2mi)3 F(=22) T (=2) T'(=24)

XT(2z34+ 1)1 (20 —26) ' (=29 —24) ' (29 + 24 + 1) ' (—€ — 23) ' (23 — ¢€)
9 ['(—2e+ 20 —2z3) ' (—e— 24) ' (24 — €)
['(—2c+ 29+ 1) (—2¢ — 23 —24)

[ Anastasiou, Dulat, CD, Mistlberger]



Triple real soft emission

® The master integrals can be computed analytically.

= There 1s an algorithmic way to express the soft master
integrals as angular integrals, for which a Mellin-Barnes

(MB) representation can be obtained. [Van Neerven, Somogy1]
B ['(6 — 6e) 10 drodzzdzy
Fs = 6426T (1 — €)4T(—6e) /_ o (2mi)3 F(=22) T (=2) T'(=24)

XT(2z34+ 1)1 (20 —26) ' (=29 —24) ' (29 + 24 + 1) ' (—€ — 23) ' (23 — ¢€)
9 ['(—2e+ 20 —2z3) ' (—e— 24) ' (24 — €)
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[ Anastasiou, Dulat, CD, Mistlberger]

® An MB representation is very useftul, but need to compute them
analytically...



Triple real soft emission

® I[n some cases the MB integrations can be done 1n closed form,
or by closing contours and summing up residues.
T(6 — 66)T(1 — 2¢)2
— F5(1.1.1 —€:2 —2¢,2 — 2¢: 1
37 (3 — 6or(2 — 22 2L L1 —62 =262 =26 1)
® In other cases the evaluation of the MB integrals 1s more

‘tricky’. .

1 15 N 411 N 1 /572 2025 N 1 75< +2295 13772
(1—2)6| 1665 ' 32¢* ' €3 e\ 27" 16 16

8 32

1 2055 ¢ 1215 N 67572 N 37

e 4 > 8 16 16

10125 3572 243 76572 50697
1 - _ _

g o3t 63+ 8106 + = 8 160

114 o2 735 40572  49957* 86570
e<— [ 959 (3 — 11097¢5 + LI LIl )+0(e2)}

Fa

Fs =

;BT g et 4 32 252
[ Anastasiou, Dulat, CD, Mistlberger]



Triple real soft emission

® We were not able to find all-order results for all the master

integral, but we have obtained a Laurent series up to weight 6
for all 9 masters.

® We have reduced the tree-level amplitude H + 5g 1n the soft
[imit to a combination of the 9 master integrals.

® New non-trivial building block needed for the full N3LLO

evaluation of the gluon fusion cross section!



Conclusion

® The inclusive gluon fusion cross section might get within

reach in the next few years! [Baikov, Chetyrkin, Smirnov,
. . Smirnov, Steinhauser; Gehrmann,
- Trlple virtuals. Glover, Huber, Ikizlerli, Studerus]

. . | Pak, Rogal, Steinhauser;
= NNLO cross section to higher orders.s, gtasion. Biehler, CD, Herzog]

| Hoschele, Hoft, Pak,
Steinhauser, Ueda]

- Trlple real soft emission. [ Anastasiou, Dulat, CD, Mistlberger]

= (Convolution with splitting functions.

® Next goals:

= Full cross section at N3LLO 1in the soft limit.

= [Jse soft limit as in1tial condition for general kinematics.



