Highlights on Standard Model Physics Results from ATLAS

João Guimarães da Costa Harvard University

Particle Physics in the LHC Era

Zurich Phenomenology Workshop

Zurich, January 7-9, 2013

Re-establishing the SM at LHC

Particle Physics in the LHC Era Zurich 2013 **0**a0 Guimaraes 2

Production cross sections in ATLAS

Particle Physics in the LHC Era Zurich 2013 -Joao Guimaraes 3

W and Z Production

eν

 $\mu \nu$

ee

μμ

- **Performance measurements**
- SM tests at TeV scale
- **Proton PDFs**
- **Backgrounds for searches**

Hadronic W Production

Additional valence u compared to $d \Rightarrow W^+$ production favored over W⁻

W inclusive cross section

Phys. Rev. D85 (2012) 072004

Z inclusive cross section

Phys. Rev. D85 (2012) 072004

Fiducial cross section

$$\sigma_{\rm fid} = \frac{N - B}{C_{W/Z} \cdot L_{\rm int}}$$

No theoretical uncertainty from extrapolation outside experimental acceptance

 $\sigma_{\rm fid}$ $\sigma_{\rm tot} = \sigma_{W/Z} \times BR(W/Z \to \ell\nu/\ell\ell) = -$

Fiducial phase space

	$W \to e\nu$:	$p_{T,e} > 20 \text{ GeV}, \eta_e < 2.47,$
,		excluding $1.37 < \eta_e < 1.52$,
1		$p_{T,\nu} > 25 \text{ GeV}, m_T > 40 \text{ GeV};$
~	$W \to \mu \nu$:	$p_{T,\mu} > 20 \text{ GeV}, \eta_{\mu} < 2.4,$
		$p_{T,\nu} > 25 \text{ GeV}, m_T > 40 \text{ GeV};$
oninkaisek	$Z \rightarrow ee:$	$p_{T,e} > 20 \text{ GeV}$, both $ \eta_e < 2.47$
		excluding $1.37 < \eta_e < 1.52$,
		$66 < m_{ee} < 116 \mathrm{GeV};$
	Forward $Z \rightarrow ee$:	$p_{T,e} > 20 \text{ GeV}$, one $ \eta_e < 2.47$,
4		excluding $1.37 < \eta_e < 1.52$,
V		other $2.5 < \eta_e < 4.9$,
		$66 < m_{ee} < 116 \mathrm{GeV};$
	$Z \to \mu \mu$:	$p_{T,\mu} > 20 \text{ GeV}$, both $ \eta_{\mu} < 2.4$,
		$66 < m_{\mu\mu} < 116 \text{GeV}$.

Fiducial W and Z Cross Sections

σTotal

Phys. Rev. D85 (2012) 072004 OFiducial

Some differentiation between PDF sets already observed JR09 seems to be the most discrepant

Ratio W and Z Cross Sections

Benefits from experimental and theoretical systematics cancellation JHEP 10 (2011) 132 Phys. Rev. D85 (2012) 072004

Strangeness in the Proton (from W and Z data)

Phys.Rev.Lett. 109 (2012) 012001

- QCD fit of ATLAS differential distributions for W⁺, W⁻ and Z with HERA e[±]p DIS data
 - NNLO pQCD analysis
 - HERAFitter framework with MCFM+APPLGRID NLO QCD
 - Corrected to NNLO QCD using k factors

$$r_{s} = \frac{0.5(s + \bar{s})}{\bar{d}} \qquad r_{s} = 0.5 \text{ fixed: } \chi^{2}/\text{ndf} = 44.5/30 \\ r_{s} \text{ free: } \chi^{2}/\text{ndf} = 33.9/30$$

Strangeness in the Proton (from W and Z data)

Phys.Rev.Lett. 109 (2012) 012001

13

Strangeness in the Proton

Phys.Rev.Lett. 109 (2012) 012001

No strange sea suppression observed

Strangeness in the Proton

Phys.Rev.Lett. 109 (2012) 012001

No strange sea suppression observed

Transverse momentum distribution of Z/ γ^* bosons

Predictions: FEWZ v2.0 + MSTW08

Fiducial measurement

Measurement of the ϕ_η * distribution of Z/ γ *

 ϕ_{η}^* is a measure of scattering angle of leptons relative to beam in Z/ γ^* rest frame ϕ_{η}^{*} is correlated to $p_{T}(\mathbf{Z})$ and probes same physics

 ϕ_{η}^{*} depends on lepton angles only, more precisely measured than momenta

Measurement of the ϕ^* distribution of Z/γ^*

Similar situation to the Z p_T and W p_T measurements

High-mass Drell-Yan Production

High-mass Drell-Yan Production

Theory: NNLO FEWZ 3.1

NNLO QCD calculation with NLO electroweak corrections (G_μ electroweak scheme)

> LO photon-induced correction $\gamma\gamma \rightarrow e^+e^-$

Results are consistent with all PDFs

W and Z plus jet production

 $W \rightarrow 1v + jets$

 $Z \rightarrow 11 + jets$

21

Phys. Rev. D85 (2012) 092002

Sherpa, Pythia, and Alpgen normalized to NNLO

DPI in W+2 jets events

Double parton interactions

cross section for the inclusive production of a combined Y + Z system

DPI in W+2 jets events

ATLAS-CONF-2011-160 (to be updated)

Particle Physics

in the

LHC

Era

Zurich 2013

Joao

G

W + b-jet Fiducial Cross Section

Important background for Higgs and top quark studies

Diboson Production

- **Fundamental test of Standard Model**
 - Triple gauge couplings (TGC)
 - **Probe for new physics**
 - **Resonances with diboson final** states

Higgs hunting

Background to Higgs

Diboson Production

Dibosons: $W\gamma/Z\gamma$

Dibosons: Wy and Zy (a) 7 TeV

 W_{γ} : Agreement with NLO MCFM calculation is not great Exclusive calculation (N_{jet} =0) is good

 $\mathbf{Z}\gamma$: Better agreement with NLO MCFM calculation

Similar observations at CMS 28

Dibosons: WW @ 7 TeV

Total cross section sults (CMS and ATLAS)

Normalized fiducial differential cross section

(several differential cross sections have been measured for all diboson channels)

'n

Events / 20GeV

Further kinematic cuts

Joao Guimaraes

Dibosons: WZ Production

7%

Dibosons: WZ a 7 TeV

Dibosons: ZZ Production

$ZZ \rightarrow 4$ leptons (eeee, µµµµ, eeµµ)

116 Ge

V

 $< M_{Z1}$

99

Two Z bosons on-shell

or

One Z boson on-shell and the other off-shell

> Also used: $Z \rightarrow vv$

Dibosons: ZZ @ 7 TeV

$ZZ \rightarrow 4$ leptons (eeee, µµµµ, eeµµ)

Dibosons: ZZ @ 7 TeV

$ZZ \rightarrow 4$ leptons (eeee, µµµµ, eeµµ)

Dibosons: ZZ Overview

Summary of diboson coss section measurements

Triple Gauge Couplings (WWZ and WW γ)

The effective Lagrangian for model-independent charged triple gauge couplings can be expressed as:

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = i \left[g_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu\nu} W^{\dagger\mu} V^{\nu}) + \kappa^V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{m_W^2} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\rho} \right]$$

 $V = Z \text{ or } \gamma$, $g_{WW\gamma} = -e$, and $g_{WWZ} = -e \cot(\theta_W)$

In the Standard Model: $(g_1^V, k_V, \lambda^V) = (1, 1, 0)_{SM}$

Set limits on:
$$\Delta g_1^V = g_1^V - 1, \Delta k^V = k_V - 1, \lambda^V$$

Introduce arbitrary cut-off scale Λ to enforce unitarity

$$lpha(\hat{s}) = rac{lpha_0}{(1+\hat{s}/\Lambda^2)^2}$$

Cross section with aTGCs has strong energy dependence k_Z proportional to $\sqrt{\hat{s}}$; g_1^Z and $\lambda^Z \sim \hat{s}$ \rightarrow measure differential cross-section sensitive to $\sqrt{\hat{s}}$

Anomalous TGC effect

0.8 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 α [anomalous coupling]

Particle Physics in the LHC Era Zurich 2013 Joao Guimaraes 41

Triple Gauge Couplings (WWZ and $WW\gamma$)

 $(using P_T(Z) distribution)$

 $4 \times m$ ore top pairs at LHC (a) 7 TeV with 1 fb⁻¹, than at the Tevatron with 5 fb^{-1}

Top Quark Production

000

m

Test QCD

 \mathbf{m}

- Study analysis techniques
- b-tagging, JES
- **Backgrounds for searches**
- A good place to search for new physics

Top quark signatures

(main bkg: W+jets and multijets)

Particle Physics in the LHC Era Zurich 2013 Joao Guimaraes 45

Top Quark Cross Section Measurements (a) **7 TeV**

46

Top Quark Pair Cross Section Measurement (a) 8 TeV

1-lepton channel (5.8 fb^{-1}) using likelihood template fit

Top Quark Pair Cross Section Measurement *a* **8 TeV**

1-lepton channel (5.8 fb^{-1}) using likelihood template fit

Inclusive tt cross section (using m(t) = 172.5 GeV:

> σ = 241 ± 2 (stat) ± 31 (syst) ± 9 (lumi) pb

Syst. dominated by MC signal modeling (ISR/FSR, generator, parton shower, PDF)

Theory: $\sigma = 238^{+22}_{-24} \text{ pb}_{(\text{HATHOR, approx. NNLO})}$

Jet Production

- NLO QCD tests at TeV scale **Proton PDFs**
- **Performance measurements**
- **Backgrounds for NP searches**

Jet Measurements

Jet algorithm:

- anti-kt with distance parameter R=0.4 and R=0.6
 - Defined at parton, particle and detector lever (FASTJET)
- Measurement
 - Infolding data from detector effect ==> particle level
- Predictions:
 - NLO pQCD with non-perturbative corrections
 - Compare different generators, tunes and PDFs

Inclusive Jet and Dijet Cross Sections at 7 TeV $L = 37 \text{ pb}^{-1}$

Inclusive jet cross section

Dijet cross section

NLOJET++ prediction with CT10

imaraes

Pa

51

Inclusive Jet Cross Sections at 7 TeV

Comparison with different Parton Distribution Functions

Inclusive Jet Cross Sections at 7 TeV

Comparison with different shower/underlying event models

Inclusive jet cross section at 2.76 TeV

ATLAS-CONF-2012-128

 $L = 0.20 \text{ pb}^{-1}$

Measurement made in the kinematic regions: $20 \le p_T < 430$ GeV and |y| < 4.4

R=0.4

R=0.6

Luminosity uncertainty: 2.8%

Inclusive jet cross section at 2.76 TeV

Uncertainties on 2.76TeV jet cross section

Uncertainties on the ratio 2.76 TeV to 7 TeV jet cross sections

Particle Physics in the LHC Era Zurich 2013 Joao Guimaraes 55

Inclusive jet cross section at 2.76 TeV

Systematic uncertainties are large ==> not easy to assess PDF impact

Cross section ratio 2.76 TeV/7 TeV

 Ratio of experimental uncertainties is reduced and generally smaller than theory uncertainty

Assessment of effect on PDFs

Fit HERA data together with ATLAS 7 TeV and 2.76 TeV data

Gluon parton density

Sea parton density

NLO pQCD analysis using HERAFitter package

(impact of jet data is most visible in the forward region)

H 1

Electroweak Fit

- **Precise measurement of electroweak** parameters constrains
 - **New physics**
 - The Higgs mass

Electroweak Theory and Top Mass

Particle Physics in the LHC Era Zurich 2013 Joao Guimaraes

Electroweak Fit Status (September 2011)

Updated with EPS'11 results

Excludes direct Higgs searches from ATLAS and CMS

The electroweak fit

Includes results until September 2012

The electroweak fit

Includes results until September 2012

Top Mass

W Mass

Guimaraes

Precision Electroweak Constraints

Disentangle if new "Higgs" boson is SM or SUSY-like

Precision Electroweak Constraints

Disentangle if new "Higgs" boson is SM or SUSY-like

Conclusions

- We have re-established the Standard Model at the LHC
 - Impressive agreement with theory across orders of magnitude
 - But, exploring ever smaller cross sections
 - Stable ground for new physics searches
 - Still, deeper understanding is needed:
 - **•** Parton distribution functions
 - **NNLO** calculations
- EW precision measurements in a good agreement with a Higgs boson with mass of 125 GeV
- What's next?

Vector Boson Fusion

Vector Boson Scattering

New results to come soon.... $\sqrt{s} = 8$ (e)

Particle Physics in the LHC Era Zurich 2013 Joao Guimaraes 66

W/Z inclusive production in e/μ channel

pp-Z + X→ ee

First W/Z measurement at 7 TeV

JHEP 12 (2010) 060

Uncertainties: Electron channel

	$\delta\sigma_{W^{\pm}}$	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$
Trigger	0.4	0.4	0.4	< 0.1
Electron reconstruction	0.8	0.8	0.8	1.6
Electron identification	0.9	0.8	1.1	1.8
Electron isolation	0.3	0.3	0.3	-
Electron energy scale and resolution	0.5	0.5	0.5	0.2
Non-operational LAr channels	0.4	0.4	0.4	0.8
Charge misidentification	0.0	0.1	0.1	0.6
QCD background	0.4	0.4	0.4	0.7
Electroweak+ $t\bar{t}$ background	0.2	0.2	0.2	< 0.1
$E_{\rm T}^{\rm miss}$ scale and resolution	0.8	0.7	1.0	_ <
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
$C_{W/Z}$ theoretical uncertainty	0.6	0.6	0.6	0.3
Total experimental uncertainty	1.8	1.8	2.0	2.7
$A_{W/Z}$ theoretical uncertainty	1.5	1.7	2.0	2.0
Total excluding luminosity	2.3	2.4	2.8	3.3
Luminosity	3.4			

Extrapolation

Uncertainties: Muon channel

	$\delta\sigma_{W^{\pm}}$	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$		
Trigger	0.5	0.5	0.5	0.1		
Muon reconstruction	0.3	0.3	0.3	0.6		
Muon isolation	0.2	0.2	0.2	0.3		
Muon $p_{\rm T}$ resolution	0.04	0.03	0.05	0.02		
Muon $p_{\rm T}$ scale	0.4	0.6	0.6	0.2		
QCD background	0.6	0.5	0.8	0.3		
$Electroweak+t\bar{t}$ background	0.4	0.3	0.4	0.02		
$E_{\rm T}^{\rm miss}$ resolution and scale	0.5	0.4	0.6	-		
Pile-up modeling	0.3	0.3	0.3	0.3		
Vertex position	0.1	0.1	0.1	0.1		
$C_{W/Z}$ theoretical uncertainty	0.8	0.8	0.7	0.3		
Total experimental uncertainty	1.6	1.7	1.7	0.9		
$A_{W/Z}$ theoretical uncertainty	1.5	1.6	2.1	2.0	Extrapolat	tio
Total excluding luminosity	2.1	2.3	2.6	2.2		
Luminosity		3.4	4			

W⁺ and W⁻ Rapidity

Rapidity dependence of W⁺/W⁻ production sensitive to differences in u and d

Flavor Decomposition

 Dominant W production mode is ud quark annihilation

- Valence u gives broader structure in y for W^+
- Significant contribution of sea quarks
 - **•** Total about 30%, particularly at low y

W/Z cross section measurements

 ATLAS, CMS and LHCb published precision measurements with 2010 data --> relatively recent publications

Phys. Rev. D85 (2012) 072004

JHEP 10 (2011) 132

Much larger datasets are now available $\sqrt{s} = 7 \text{ TeV}, 5 \text{ fb}^{-1}$ $\begin{cases} W \rightarrow e/\mu v : \sim 25 \text{ Million} \\ Z \rightarrow ee/\mu\mu : \sim 3 \text{ Million} \end{cases} + \begin{cases} \sqrt{s} = 8 \text{ TeV} \\ \sim 23 \text{ fb}^{-1} \end{cases}$

Particle Physics in the LHC Era Zurich 2013 Joao Guimaraes 75

Lepton Universality

Phys. Rev. D85 (2012) 072004

W and Z Inclusive Cross Sections

CMS-PAS-12-011

$d\sigma_W/d\eta_I$ versus NNLO PDF predictions

First LHC combined plot (LHC EWK WG)

Discrimination between PDF

at low $|\eta|$

Transverse momentum distribution of \mathbf{Z}/γ^* bosons

Predictions: Different event generators

Fiducial measurement

Ratio to RESBOS

Similar situation with W p_T

Drell-Yan Production

High-mass Drell-Yan Production

Drell-Yan production in forward region (LHCb)

LHCb-CONF-2012-013

Dibosons: $W\gamma$

Wy: Agreement with NLO MCFM calculation is not great Exclusive calculation ($N_{jet} = 0$) looks good

Dibosons: $Z\gamma$

 $Z\gamma$: Good agreement with NLO MCFM calculation

Top Quark Pair Production at Hadron Coniders

than at the Tevatron with 5 fb⁻¹

92

Electroweak Top Production at Hadron Colliders

O(NNLO) (pb) (m _{top} = 172.5 GeV)	s-channel 9 ************************************	t-channel y y y w- y y t	Wt-channel
Tevatron @ 1.96 TeV	1.04 ± 0.4	2.26 ± 0.12	0.28 ± 0.06
LHC @ 7 TeV	4.6 ± 0.3	64.6 ^{+3.3} -2.6	15.7 ± 1.4
	Very difficult at LHC		Not possible at Tevatron

Inclusive Jet Cross Sections at 7 TeV

Non-perturbative corrections

Inclusive jet cross section at 2.76 TeV

Uncertainties on NLO pQCD prediction of cross section

Uncertainties on NLO pQCD prediction of cross section ratio

Inclusive jet cross section at 2.76 TeV

ATLAS-CONF-2012-128

Systematic uncertainties

	1							
Uncertainty source	y bins					Correlation		
	0-0.3	0.3-0.8	0.8-1.2	1.2-2.1	2.1-2.8	2.8-3.6	3.6-4.4	to 7 TeV
Trigger efficiency	u_1	u_1	u_1	u_1	u_1	u_1	u_1	N
Jet reconstruction eff.	83	83	83	83	84	85	86	Y
Jet selection eff.	<i>u</i> ₂	u_2	u_2	u_2	u_2	u_2	u_2	N
JES1: Noise thresholds	1	1	2	3	4	5	6	Y
JES2: Theory UE	7	7	8	9	10	11	12	Y
JES3: Theory showering	13	13	14	15	16	17	18	Y
JES4: Non-closure	19	19	20	21	22	23	24	Y
JES5: Dead material	25	25	26	27	28	29	30	Y
JES6: Forward JES generators	88	88	88	88	88	88	88	*
JES7: E/p response	32	32	33	34	35	36	37	Y
JES8: E/p selection	38	38	39	40	41	42	43	Y
JES9: EM + neutrals	44	44	45	46	47	48	49	Y
JES10: HAD <i>E</i> -scale	50	50	51	52	53	54	55	Y
JES11: High p_T	56	56	57	58	59	60	61	Y
JES12: E/p bias	62	62	63	64	65	66	67	Y
JES13: Test-beam bias	68	68	69	70	71	72	73	Y
JES15: Forward JES detector	89	89	89	89	89	89	89	*
Jet energy resolution	76	76	77	78	79	80	81	Y
Jet angle resolution	82	82	82	82	82	82	82	Y
Unfolding: Closure test	74	74	74	74	74	74	74	N
Unfolding: Jet matching	75	75	75	75	75	75	75	N
Luminosity	87	87	87	87	87	87	87	N

Calorimeter and jet reconstruction common to both analyses at 7 TeV and 2.76 TeV Jet energy scale (JES) systematics are largely correlated between the two analyses