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During the past years, the Zurich Phenomenology Workshop
has developed into a forum for particle physics researchers to
discuss the lastest developments in phenomenology. Its recent
editions focused on

2009 Higgs Boson Phenomenology

2010 The New, the Rare and the Beautiful

2011 Heavy Particles at the LHC

2012 Higgs Search confronts Theory

In its 2010-2012 run, the LHC produces high-quality datasets
of proton-proton collisions at 7 and 8 TeV.

These data help to eludicate the mechanism of electroweak
symmetry breaking by providing the necessary sensitivity for
the discovery of the Higgs boson and the study of its
properties. They may contain first indications for physics
beyond the Standard Model and will equally allow many
precision measurements of Standard Model benchmark
processes.

The Zurich Phenomenology workshop will bring together
leading researchers from experimental and theoretical
elementary particle physics to discuss the results of the 2010-
12 run and their implications for unraveling the structure of
particle physics at the Fermi scale.

Featured speakers

The event starts on Monday the 7th of

January at 9.30am (registration from

8.45am) and ends on Wednesday the

9th, at 15:30 in the afternoon.

SPONSORED BY: CURATED BY: 

eth | uzh | psi | zurich
For any further information or questions

please don't hesitate to contact Esther
Meier at: emeier@physik.uzh.ch

Organized by C. Anastasiou F. Canelli T. Gehrmann A. Gehrmann-De Ridder M. Grazzini A. Lazopoulos S. Pozzorini A. Signer M. Spira

P.F. Monni
U. Zurich

F. Maltoni
CP3, Louvain

A. Masiero
INFN

M. Neubert
U. Mainz

C. Oleari
U. Milano

J. Pires
ETH Zurich

Mahbubani, Papucci, GP, Ruderman & Weiler (12); 
Kadosh, Paride & GP, to appear;
Blanke, Giudice, Paride, GP & Zupan, in preparation;
Delaunay, Grojean & GP, to appear;
[Gedalia, Isidori, Maltoni, GP, Selvaggi & Soreq (12) ?]
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Outline

♦ top precision b-physics @ ATLAS & CMS. (& beyond)  

♦ Summary.

♦ Intro’: SUSY & the LHC so far ...  

♦ Battle for naturalness & the window of charm:    

♦ Possible holes in searches & interplay \w flavor precision. 

(i) stop searches; (ii) implications of Higgs on composite light flavors.  

(if time permits)
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Current status of Supersymmetry

1st & 2nd geneneration 
squark limits
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Figure 7: 95% CLs exclusion limits obtained by using the signal region with the best expected sensitiv-
ity at each point in a simplified MSSM scenario with only strong production of gluinos and first- and
second-generation squarks, and direct decays to jets and neutralinos (left); and in the (m0 ; m1/2) plane of
MSUGRA/CMSSM for tan � = 10, A0 = 0 and µ > 0 (right). The red lines show the observed limits, the
dashed-blue lines the median expected limits, and the dotted blue lines the ±1� variation on the expected
limits. ATLAS EPS 2011 limits are from [17] and LEP results from [59].

7 Summary

This note reports a search for new physics in final states containing high-pT jets, missing transverse
momentum and no electrons or muons, based on the full dataset (4.7 fb�1) recorded by the ATLAS
experiment at the LHC in 2011. Good agreement is seen between the numbers of events observed in the
data and the numbers of events expected from SM processes.

The results are interpreted in both a simplified model containing only squarks of the first two genera-
tions, a gluino octet and a massless neutralino, as well as in MSUGRA/CMSSM models with tan � = 10,
A0 = 0 and µ > 0. In the simplified model, gluino masses below 940 GeV and squark masses be-
low 1380 GeV are excluded at the 95% confidence level. In the MSUGRA/CMSSM models, values of
m1/2 < 300 GeV are excluded for all values of m0, and m1/2 < 680 GeV for low m0. Equal mass squarks
and gluinos are excluded below 1400 GeV in both scenarios.
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Light squarks > 1.4 TeV?

Assumptions?

What is driving the limit?

Holes in the net?
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The results are interpreted in both a simplified model containing only squarks of the first two genera-
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Light squarks > 1.4 TeV?

Assumptions?

What is driving the limit?

Holes in the net?

Putting stops aside, what are the bounds on first 2-
generation “light” squarks?         

Bounds from ATLAS & CMS: 
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What if first 2 generation squark not degenerate?
Mahbubani, Papucci, GP, Ruderman & Weiler (12). 
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(ũ, d̃)L, ũR, d̃R,
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(ũ, d̃)L, ũR, d̃R,
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Tevatron  

Fermilab 

1 km 

CDF 
D0 

Main Injector 

PIC 2009 – Kobe, Japan Bernd Stelzer, Simon Fraser University 

- The Energy Frontier -!

LHC 

CERN 

•! 1.96 TeV pp collider 

•! Run II started in 2001 

•! Record Inst. Lum. 3.6!1032 [cm-2sec-1] 

Most of the results 

•! 14 TeV pp collider 

•! Restart in Nov 2009 at 7 TeV 

•! Inst. Lum. 1032-1034 [cm-2sec-1] 

ATLAS 

CMS 

Brief outlook 

??

??
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What drives the experimental limits?

♦ Signal efficiencies;

♦ Production rate, PDFs.

♦ Squark multiplicity; 
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What drives the experimental limits?
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♦ Squark multiplicity; 
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(ũ, d̃)L, (c̃, s̃)L

How do limits change?
Estimate:

‡ ≥ 1
m5

q̃

Decouple 6 dof:

∆ �m
max

m
max

= 1 ≠ 4≠1
5 ≥ 25%

TOO NAIVE!

Rakhi Mahbubani CERN Flavour vs LHC squark limits 6/14
6/14

Cross-sections vs. mass

200 300 400 500 600 700 800
0.001

0.01

0.1

1

10

msquark@GeVD

s
@pbD

(gluino decoupled)

✓
300

m

◆6

pb

 NLO xsec (Prospino)

(roughly)�(pp ! ũRũ
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(ũ, d̃)L, ũR, d̃R,
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(ũ, d̃)L, ũR, d̃R,
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E�ciencies

Signal e�ciency falls very rapidly with decreasing squark mass
Below ≥ 600 GeV ‘‡ = 1

Rakhi Mahbubani CERN Flavour vs LHC squark limits 8/14
8/14

Squark searches
• Relaxing degeneracy assumption:

• naively: σ ∝ 1/m6                                  
→ from 8→2 light squarks mass limit 
change by 41/6-1~ 25%

• but:

• efficiencies have hard thresholds  
(and current limits are on the 
thresholds) 

• P.d.f’s have large effects                      
(u vs. d vs. c vs. s…) 

• large effects on mass limits!! 
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PDFs: all 4 flavor “sea” squarks can be rather light!
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Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D
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0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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FIG. 3: Squark mass limits in three phenomenologically interesting scenarios with non-degenerate first- and second-generation
squarks. The left panel contains the least constrained scenario, with a single second-generation squark flavor split from all others;
the middle panel corresponds to an alignment-type scenario with first-generation squarks split from the second-generation. The
shaded blue region is excluded by flavor and CP violation constraints which apply to electroweak doublet squarks only, while
the singlet spectrum remains completely unconstrained; the right panel corresponds to an MFV-type scenario with split up-type
and down-type singlets, and doublets formally decoupled. The red dashed (dotted) lines represent the exclusion contour if the
LO mixed up-down squark production cross section is multiplied by a K-factor of 1.5 (2.0).

plot include the full dependence on the squark masses,
crucial when the splitting is large [29]. Although the sin-
glet squarks are kept degenerate with the corresponding
doublets for simplicity, their splittings are unconstrained
by flavor, and they could also be decoupled, resulting
in weaker LHC bounds (corresponding to the contour
�/�lim ⇠ 2), with unchanged flavor bounds. The right-
hand panel contains the limits in an MFV-type scenario,
with split up-type and down-type singlets, and doublets
formally decoupled. The red dashed (dotted) lines rep-
resent the exclusion contour if the LO mixed up-down
squark production cross section is multiplied by a K-
factor of 1.5 (2.0).

The surprisingly weak limits, in particular for squarks
of the second generation, demonstrate how ine↵ective
current searches are for light squarks. Re-optimizing
the ATLAS 2-6 jets plus MET search using only the
me↵ cut is not e↵ective: while the background grows
like m6

e↵ , the signal grows much more slowly, ensuring
that decreasing the me↵ cut makes things worse. It is
possible that the limits would improve on performing ei-
ther a full re-optimization including all cut variables, or
a shape analysis; such a study, however, is beyond the
scope of this paper. Instead, in Fig. 4, we compare the
limits for squark cross sections from various 7 TeV AT-
LAS and CMS jets plus MET searches (which have limits
for degenerate squarks that are competetive with those
of recent 8 TeV searches [33, 34]). We find indeed that
the most stringent bounds come from the more complex
shape-based analyses, such as the CMS razor search.

Conclusion: We have argued that a combination of
reduced e�ciencies and suppression due to PDFs leads
to constraints on non-degenerate squark masses (for the
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FIG. 4: Comparison between upper limits on squark pair-
production cross sections with a decoupled gluino and mass-
less neutralino, from 7TeV 5 fb�1 ATLAS and CMS jets plus
MET searches [15, 30–32]. We use the o�cial experimental
limits, except for the ATLAS search where we use our esti-
mate of the limit, simulating the search with ATOM (solid)
and PGS (dotted).

first two generations) that are significantly weaker than
those assuming eightfold degeneracy. For instance, an
O(400GeV) squark belonging to the second generation
can be buried in the LHC jets plus MET data. In the
above analysis we have neglected for simplicity the e↵ects
of squark mixing, which could be sizable in alignment
models. In addition, our reinterpreted limits, while as-
suming the bino is the lightest SUSY particle (LSP), are
still applicable for singlino or gravitino LSPs, or when ad-
ditional electroweak (e.g. higgsinos) and leptonic states
are present, but do not drastically alter the light squark
branching ratios. In spite of the dramatic increase of
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PDFs: all 4 flavor “sea” squarks can be rather light!
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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FIG. 3: Squark mass limits in three phenomenologically interesting scenarios with non-degenerate first- and second-generation
squarks. The left panel contains the least constrained scenario, with a single second-generation squark flavor split from all others;
the middle panel corresponds to an alignment-type scenario with first-generation squarks split from the second-generation. The
shaded blue region is excluded by flavor and CP violation constraints which apply to electroweak doublet squarks only, while
the singlet spectrum remains completely unconstrained; the right panel corresponds to an MFV-type scenario with split up-type
and down-type singlets, and doublets formally decoupled. The red dashed (dotted) lines represent the exclusion contour if the
LO mixed up-down squark production cross section is multiplied by a K-factor of 1.5 (2.0).

plot include the full dependence on the squark masses,
crucial when the splitting is large [29]. Although the sin-
glet squarks are kept degenerate with the corresponding
doublets for simplicity, their splittings are unconstrained
by flavor, and they could also be decoupled, resulting
in weaker LHC bounds (corresponding to the contour
�/�lim ⇠ 2), with unchanged flavor bounds. The right-
hand panel contains the limits in an MFV-type scenario,
with split up-type and down-type singlets, and doublets
formally decoupled. The red dashed (dotted) lines rep-
resent the exclusion contour if the LO mixed up-down
squark production cross section is multiplied by a K-
factor of 1.5 (2.0).

The surprisingly weak limits, in particular for squarks
of the second generation, demonstrate how ine↵ective
current searches are for light squarks. Re-optimizing
the ATLAS 2-6 jets plus MET search using only the
me↵ cut is not e↵ective: while the background grows
like m6

e↵ , the signal grows much more slowly, ensuring
that decreasing the me↵ cut makes things worse. It is
possible that the limits would improve on performing ei-
ther a full re-optimization including all cut variables, or
a shape analysis; such a study, however, is beyond the
scope of this paper. Instead, in Fig. 4, we compare the
limits for squark cross sections from various 7 TeV AT-
LAS and CMS jets plus MET searches (which have limits
for degenerate squarks that are competetive with those
of recent 8 TeV searches [33, 34]). We find indeed that
the most stringent bounds come from the more complex
shape-based analyses, such as the CMS razor search.

Conclusion: We have argued that a combination of
reduced e�ciencies and suppression due to PDFs leads
to constraints on non-degenerate squark masses (for the
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FIG. 4: Comparison between upper limits on squark pair-
production cross sections with a decoupled gluino and mass-
less neutralino, from 7TeV 5 fb�1 ATLAS and CMS jets plus
MET searches [15, 30–32]. We use the o�cial experimental
limits, except for the ATLAS search where we use our esti-
mate of the limit, simulating the search with ATOM (solid)
and PGS (dotted).

first two generations) that are significantly weaker than
those assuming eightfold degeneracy. For instance, an
O(400GeV) squark belonging to the second generation
can be buried in the LHC jets plus MET data. In the
above analysis we have neglected for simplicity the e↵ects
of squark mixing, which could be sizable in alignment
models. In addition, our reinterpreted limits, while as-
suming the bino is the lightest SUSY particle (LSP), are
still applicable for singlino or gravitino LSPs, or when ad-
ditional electroweak (e.g. higgsinos) and leptonic states
are present, but do not drastically alter the light squark
branching ratios. In spite of the dramatic increase of
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Bottom line: 
2nd gen’ squarks can be light 

& consistent \w direct searches!
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Let us focus on the low energy, model indep’, effective story.
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♦SUSY flavor & CP violation => misalignment between squark soft 

masses & standard model (SM) Yukawa matrices.

♦SM: right handed (RH) flavor violated by single source,                      ,

=> RH SUSY masses are alignable removing RH flavor & CP violation:  
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Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
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is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:
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♦ SM LH sector consist of 2 flavor breaking sources:

♦SUSY: cannot align LH masses 

    

YdY
†
d & YuY

†
u

simultaneously with both sources!
Dangerous direction wins to reduce 
bounds ...

(a)

µ e

γ

µ
eB

(b)

d s

s d

g g

d

s

s

d

Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
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u1; m2
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)

38

q̃2L

q̃2Lq̃1L

q̃1L

K0 K̄0

�MK , ✏K �MD, AD
��MD, AD
�

NP = m̃2
Q

11



The SUSY left handed flavor challange

Yasmin & Gilad Perez <jasgilperez@gmail.com>

Your Holiday Inn Express (R) Reservation Confirmation - SOMMA
LOMBARDO, ITALY: 67442015
Holiday Inn Express Reservations <HolidayInnExpress@reservations.ihg.com> Mon, Feb 15, 2010 at 2:35 PM
Reply-To: HolidayInnExpress@reservations.ihg.com
To: jasgilperez@gmail.com

Reservation Resources

Add to Calendar
Modify/Cancel Reservation
View All Reservations
Make Another Reservation
View Account

Other Travel Resources

Featured Offer

Thank you for choosing Holiday Inn Express. Here is your reservation information.

 Reservation Questions: 180 945 3716

Reservation Information

Your confirmation number is 67442015
Please use your confirmation number to reference your reservation.

Priority Club Rewards:
Your Priority Club Rewards number applies to this reservation.

Guest Name:
MR GILAD PEREZ

Additional Guests:

No additional guests.

Check-In: Sun 21 Mar 2010 at 02:00
PM
Check-Out: Mon 22 Mar 2010 at 12:00
PM

   Add to Calendar
View/Modify/Cancel Reservation

Hotel Information

MILAN-MALPENSA AIRPORT
Holiday Inn Express
VIA DE PINEDO ANG VIA OLDRINI
CASE NUOVE
SOMMA LOMBARDO, 21019
39-0331-18330

Helpful Links
Local Maps

Find Attractions
Make Another Reservation

Driving Directions:
NORTH FROM MOTORWAY A8 EXIT BUSTO ARSIZIO TAKE STATE ROAD SS336
EXIT CASE NUOVE-SOMMA LOMBARDO TAKE SP 52 TO CASE NUOVE VILLAGE

Room/Rate Information

Rate Type: Advance Purchase
Rate Description: Special Savings! Reservations require full prepayment for the

entire stay at time of booking. Fully non refundable. Prepayment
is charged to credit card between time of booking and day of
arrival and is non refundable. No refunds if cancelled or changed.

 The credit card MUST be presented upon check-in at the
hotel.

Deposit Required: A deposit for the entire stay is due at time of booking.
Pet Policy: Only guide dogs allowed.

♦ SM LH sector consist of 2 flavor breaking sources:

♦SUSY: cannot align LH masses 

    

YdY
†
d & YuY

†
u

simultaneously with both sources!
Dangerous direction wins to reduce 
bounds ...

(a)

µ e

γ

µ
eB

(b)

d s

s d

g g

d

s

s

d
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
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Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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L has arbitrary off-diagonal entries. If m2
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e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
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Q1; m2
u = m2

u1; m2
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L = m2
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e = m2
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
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L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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♦ SM LH sector consist of 2 flavor breaking sources:
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Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:
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u = m2
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
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Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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q ij (⇥q
ij)MM ⌃⇥q

ij⌥
d 12 0.03 0.002
d 13 0.2 0.07
d 23 0.6 0.2
u 12 0.1 0.008

Table 4: The phenomenological upper bounds on (⇥q
ij)MM and on ⌃⇥q

ij⌥, where q = u, d and
M = L, R. The constraints are given for m̃q = 1 TeV and x ⇤ m2

g̃/m̃
2
q = 1. We assume that

the phases could suppress the imaginary parts by a factor ⇧ 0.3. The bound on (⇥d
23)RR is about

3 times weaker than that on (⇥d
23)LL (given in table). The constraints on (⇥d

12,13)MM , (⇥u
12)MM

and (⇥d
23)MM are based on, respectively, Refs. [143], [17] and [144].

q ij (⇥q
ij)LR

d 12 2⇥ 10�4

d 13 0.08
d 23 0.01
d 11 4.7⇥ 10�6

u 11 9.3⇥ 10�6

u 12 0.02

Table 5: The phenomenological upper bounds on chirality-mixing (⇥q
ij)LR, where q = u, d. The

constraints are given for m̃q = 1 TeV and x ⇤ m2
g̃/m̃

2
q = 1. The constraints on ⇥d

12,13, ⇥u
12, ⇥d

23

and ⇥q
ii are based on, respectively, Refs. [143], [17], [144] and [147] (with the relation between

the neutron and quark EDMs as in [148]).

For large tan �, some constraints are modified from those in Table 4. For instance, the
e⇥ects of neutral Higgs exchange in Bs and Bd mixing give, for tan � = 30 and x = 1 (see [140,
145, 146] and refs. therein for details):

⌃⇥d
13⌥ < 0.01

�
MA0

200 GeV

⇥
, ⌃⇥d

23⌥ < 0.04

�
MA0

200 GeV

⇥
, (132)

where MA0 denotes the pseudoscalar Higgs mass, and the above bounds scale roughly as
(30/ tan �)2.

The experimental constraints on the (⇥q
ij)LR parameters in the quark-squark sector are

presented in Table 5. The bounds are the same for (⇥q
ij)LR and (⇥q

ij)RL, except for (⇥d
12)MN ,

where the bound for MN = LR is 10 times weaker. Very strong constraints apply for the
phase of (⇥q

11)LR from EDMs. For x = 4 and a phase smaller than 0.1, the EDM constraints on
(⇥u,d,�

11 )LR are weakened by a factor ⇧ 6.
While, in general, the low energy flavor measurements constrain only the combinations of

the suppression factors from degeneracy and from alignment, such as Eq. (130), an interesting
exception occurs when combining the measurements of K0–K0 and D0–D0 mixing to test the
first two generation squark doublets (based on the analysis in Sec. 5.2.1). Here, for masses
below the TeV scale, some level of degeneracy is unavoidable [23]:

m eQ2
�m eQ1

m eQ2
+ m eQ1

⌅
⇤

0.034 maximal phases

0.27 vanishing phases
(133)

Similarly, using �F = 1 processes involving the third generation (Sec. 5.2.2), the following

42

Taking [29] m̃Q = 1
2(m̃Q1 + m̃Q2) and similarly for the SU(2)-singlet squarks, we find that

we thus have an upper bound on the splitting between the first two squark generations:

mQ̃2
�mQ̃1

mQ̃2
+ mQ̃1

⇥< 0.05� 0.14,

mũ2 �mũ1

mũ2 + mũ1
⇥< 0.02� 0.04. (6.12)

The first bound applies to the up squark doublets, while the second to the average of the

doublet mass splitting and the singlet mass splitting. The range in each of the bounds

corresponds to values of the phase between zero and maximal. We can thus make the

following conclusions concerning models of alignment:

1. The mass splitting between the first two squark doublet generations should be below

14%. For phases of order one, the bound is about 2� 3 times stronger.

2. In the simplest models of alignment, the mass splitting between the first two squark

generations should be smaller than about four percent.

3. The second (stronger) bound can be avoided in more complicated models of alignment,

where holomorphic zeros suppress the mixing in the singlet sector.

4. While RGE e⇥ects can provide some level of universality, even for anarchical boundary

conditions, the upper bound (6.12) requires not only a high scale of mediation [30] but

also that, at the scale of mediation, the gluino mass is considerably higher than the

squark masses.

In any model where the splitting between the first two squark doublet generations is larger

than O(y2
c ), |K

uL
21 �KdL

21 | = sin ⇥c = 0.23. Given the constraints from �mK and �K on |KdL
12 |,

one arrives at a constraint very similar to the first bound in Eq. (6.12). We conclude that

the constraints on the level of degeneracy between the squark doublets (stronger than five

to fourteen percent) applies to any supersymmetric model where the mass of the first two

squark doublet generations is below TeV. It is suggestive that the mechanism that mediates

supersymmetry breaking is flavor-universal, as in gauge mediation.
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With phases, first 2 gen’ squark need to have almost equal masses.
Looks like squark anarchy/alignment is dead!
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.
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FIG. 1: The bound on �

12
Q as a function of the angle ↵ (see text). The angle ↵ is plotted on a log scale in the basis �C = 0.23,

so that a value of 1 on the x axis corresponds to ↵ = �C (large angle), while a value of 5 gives ↵ = �

5
C (small angle — down

alignment). The vertical doted line shows the angle of optimal alignment (weakest bound). The red (blue) shaded region
corresponds to a gluino mass mg̃ of 1 (1.5) TeV, and inside each region the average squark mass m̄Q̃ is varied in the range
[0.8mg̃, 1.2mg̃]. The upper edge of each region (weakest bound) comes from the lowest m̄Q̃ . The two dashed lines correspond
to m̄Q̃ = mg̃ .

is shown in Fig. 1 as a function of the angle ↵, for various ranges of the relevant SUSY parameters (see the caption).
It can be seen that on the right-hand side of the plot, where the angle is very small (down alignment), the strongest
constraint comes from �mD , while on the left hand side, where the angle is large, ✏K is the dominant constraint.
The vertical dashed line marks the transition point, where the alignment is optimal, yet as evident from the plot,
making the angle smaller only mildly a↵ects the bound on �12Q . For the case where the gluino mass and the average
squark mass are both 1 TeV, the weakest bound is �12Q . 0.13. This occurs around log� ↵ ⇠ 2.5, so the universal CP

violating phase is of order �2.5
C . This implies an upper bound on CP violation in D �D mixing of order 0.2, around

the current experimental limit on
��|q/p|� 1

�� [32], which is expected to be improved significantly in the near future.
It is interesting that a modest level of degeneracy can be obtained only from the renormalization group equation

(RGE) flow, when starting from anarchy at the SUSY breaking mediation scale [33]. Moreover, in order to satisfy
the bounds on degeneracy from optimal alignment models, as presented in Fig. 1, the mediation scale does not have
to be very high. To show this, we use the SUSY RGE for the diagonal squark mass entries, which is dominated by
the gluino contribution. Neglecting the other gaugino contributions, we can solve the relevant equations at one loop
analytically

1

↵s(MS)
=

1

↵s(⇤)
+

b
3

2⇡
ln

⇤

MS
, (25)

mg̃(⇤)
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3
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⇤
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, (26)
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˜Q1,2
(⇤) =

8

3b
3

⇥
mg̃(⇤)

2 �mg̃(MS)
2

⇤
, (27)

where ⇤ is the typical scale of the new supersymmetric particles (taken to be 1 TeV), MS is the SUSY breaking
mediation scale, b

3

= �3 is the MSSM QCD beta function and the last equation is written in the squark mass basis.
In addition, we define

P
m2

˜Q
(µ) = m2

˜Q1
(µ) +m2

˜Q2
(µ) and �m2

˜Q
(µ) = m2

˜Q2
(µ)�m2

˜Q1
(µ). Then in our approximation,

only
P

m2 has a nontrivial RGE evolution, while �m2 is invariant. Writing

�12Q (µ) =
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˜Q
(µ)

P
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˜Q
(µ)

h
1 +

r
1�

⇣
�m2
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P
m2

˜Q
(µ)

⌘
2

i , (28)
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We show that new physics that breaks the left-handed SU(3)Q quark flavor symmetry induces
contributions to CP violation in �F = 1 processes which are approximately universal, in that
they are not a↵ected by flavor rotations between the up and the down mass bases. Therefore,
such flavor violation cannot be aligned, and is constrained by the strongest bound from either
the up or the down sectors. We use this result to show that the bound from ✏

0
/✏ prohibits an

SU(3)Q breaking explanation of the recent LHCb evidence for CP violation in D meson decays.
Another consequence of this universality is that supersymmetric alignment models with a moderate
mediation scale are consistent with the data, and are harder to probe via CP violating observables.
With current constraints, therefore, squarks need not be degenerate. However, future improvements
in the measurement of CP violation in D �D mixing will start to probe alignment models.

I. INTRODUCTION

Measurements of flavor-changing neutral-current (FCNC) processes in the quark sector put strong constraints on
New Physics (NP) at the TeV scale and provide a crucial guide for model building. Generically, NP models can avoid
existing bounds by aligning the flavor structure with one of the quark Yukawa matrices. However, new flavor breaking
sources involving only the SU(2)L doublet quarks Qi (i.e., breaking only the SU(3)Q quark flavor symmetry) cannot
be simultaneously diagonalized in both the up and the down quark mass bases, and new contributions to FCNCs
are necessarily generated. To constrain such models of flavor alignment, processes involving both up and down type
quark transitions need to be measured. Consequently, one would näıvely conclude that robust constraints on the
corresponding microscopic flavor structures come from the weaker of the bounds in the up and the down sectors.

Below we argue, however, that in a large class of models, contrary to flavor violation in �F = 2 processes [1], in
the case of �F = 1 CP violation, it is the strongest of the up and down sector constraints which applies. We show
that in these scenarios, to a good approximation, the sources of �F = 1 CP violation are universal, namely they do
not transform under flavor rotations between the up and the down mass bases. This is particularly important for the
NP interpretation of the recent LHCb evidence for CP violation in D decays. Employing the ✏0/✏ constraint on new
CP violating �s = 1 operators, we exclude sizable contributions of SU(3)Q breaking NP operators to the direct CP
asymmetries in singly-Cabibbo-suppressed D decays, in particular to �aCP measured by the LHCb experiment [2].

Furthermore, applying our argument to rare semileptonic K and B decays, we show how the present and future
measurements of these processes constrain the sources of CP violation in rare semileptonic D decays and FCNC top
decays. In particular, the observation of non-SM CP asymmetries in these processes would, barring cancellations,
signal the presence of new sources of SU(3)U,D flavor symmetry breaking.

Finally, an additional implication of our result is that in viable flavor alignment models the universal flavor and CP
violating phases are naturally small. Applying this insight to supersymmetric (SUSY) alignment models leads to the
conclusion that the first two generation squarks can have mass splittings as large as 30% at the TeV scale, consistent
with mass anarchy at a supersymmetry breaking mediation scale as low as 10 TeV.

II. UNIVERSALITY OF CP VIOLATION WITH TWO GENERATIONS

It is well known that the gauge sector of the Standard Model (SM) respects a large global flavor symmetry. In the
quark sector, the corresponding flavor group, GF = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D , is broken by the up and the down
Yukawa matrices Yu,d , formally transforming as (3, 3̄, 1) and (3, 1, 3̄) under GF , respectively. From these, one can
construct two independent sources of SU(3)Q breaking,

Au ⌘ (YuY
†
u )/tr , Ad ⌘ (YdY

†
d )/tr , (1)
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uL aligned ↔ dL aligned

6

operator, O
7

, is also important at small q2. The B ! K⇤`+`� mode is particularly promising, since the distribution
of the K⇤ ! K⇡ decay products allows to extract information about the polarization of the K⇤. When combined
with the angular distributions of the two charged leptons, it is possible to construct observables probing directly CP
violating contributions to the relevant short-distance Wilson coe�cients [23]. Such observables could potentially be
measured at LHCb and SuperB [24]. On the other hand, the direct CP asymmetries depend on strong phases, which
are small in the inclusive B ! Xs`+`� decay (outside the resonance region), and are poorly known in the exclusive
B ! K(⇤)`+`� case. Another probe of this physics could be the study of time-dependent CP asymmetries in these
modes. While these are challenging experimentally, the interpretation of the results would be theoretically cleaner.
The SM predicts that the time-dependent CP asymmetry vanishes, as it does in Bs ! ��, to an even better accuracy
than in Bs !  �, due to a 2�s � 2�s cancellation between the mixing and decay phases. The same cancellation
occurs in NP models in which the mixing amplitude is modified as MSM

12

⇥ R2 and the decay amplitude is modified
as ASM ⇥ R. While this is the case in most supersymmetric models, it is not generic, and is violated, for example,
by models containing a Z 0 which has a flavor changing coupling to quarks and non-universal couplings to quarks and
leptons. (With very large data sets at the upgraded LHCb, a time-dependent Bs ! µ+µ� analysis would also be
worth pursuing.)

To analyze the connection between t ! cZ and FCNC b ! s decays, we need to consider the NP operators
before the Z is integrated out [25]. For example, the operator (b̄s)V�A (H†DH) contributes to Eq. (20), since after
electroweak symmetry breaking H†DµH ! gv2Zµ. Thus the relevant Wilson coe�cient, CH

bs , is constrained from
B ! Xs`+`�, similar to Eq. (22), as

��Im(CH
bs)
�� < 8.7⇥ 10�3 (⇤

NP

/TeV)2. Top decays into final states with a jet and
a pair of charged leptons o↵er a probe of the related (Xu

L)tc and (Xu
L)tu contributions [26]. The expected sensitivity

of this mode with 100 fb�1 at the 14 TeV LHC is |CH
tc(u)| . 0.2 (⇤

NP

/TeV)2 [25, 27], where the relevant operator is

defined as (t̄c(u))V�A (H†DH). According to Eq. (7), we can conclude that barring cancellations, any experimental
signal of CP violation in this channel would have to be due to SU(3)U breaking NP.

V. IMPLICATIONS FOR SUSY MODELS

In SUSY models the left-handed squark mass-squared matrix, m̃2

Q , is the only source of SU(3)Q breaking, and
is approximately SU(2)L invariant (see, e.g., [28] and references therein). In the following we discuss a universal
constraint on m̃2

Q from �F = 1 CP violation. In addition, we consider an example of �F = 2 constraints in relation
to alignment models, where our argument about universality of the CP phase also plays a role. In all cases the bounds
can be directly applied on the corresponding mass insertion parameters.

First we analyze the constraint from ✏0/✏. In the super-CKM basis, the neutral gaugino couplings are flavor
diagonal, while the mass matrices of the squarks are not diagonal in general. New contributions to CP violation
in �F = 1 processes involving left handed quarks are induced by the imaginary o↵-diagonal elements of m̃2

Q , and

can be parameterized in terms of the ratios �ijLL ⌘
�
m̃2

Q

�ij
/ m̄2

˜Q
, where i, j = 1, 2 are flavor indices and m̄

˜Q ⌘
(m

˜Q1
+m

˜Q2
)/2 is the average squark mass (this choice is consistent to linear order with the convention of [29]). The

experimental constraint on new contributions to ✏0/✏ is translated to the following bound on the left-handed mass
insertion parameter [29] Im �12LL  0.5 for m̄

˜Q = mg̃ = 500 GeV . This can be straightforwardly rephrased as a robust
constraint on the level of degeneracy

�12Q ⌘
m

˜Q2
�m

˜Q1

m
˜Q2

+m
˜Q1

 0.25

 
500GeV

m̄
˜Q

!
. (24)

This bound is weaker than the one obtained by combining the bounds from ✏K andD�D mixing [1]. Yet, interestingly,
it could have constrained degeneracy without the need for any additional measurements involving D mesons, more
than 20 years ago already, when the experimental uncertainty of ✏0/✏ approached the 10�3 level [30].

Constraints on alignment models that balance the bounds from mixing and CP violation in the K and D systems
have been analyzed in [1]. Here we comment on their results for supersymmetric models based on our CP universality
argument. According to the parameterization employed in [1], sin↵ (sin 2�) is proportional to the real (imaginary)
part of the o↵-diagonal element of the NP flavor violating source in the down mass basis. CP universality implies that
in the up mass basis, sin 2� still corresponds to the imaginary part, while the real part is rotated by twice the Cabibbo
angle. Equation (31) in [1] gives the bounds on squark mass degeneracy for the cases of vanishing (sin 2� = 0) and
maximal (sin 2� ⇠ 1) phase. We argue that the latter case is irrelevant, since it violates the assumption of alignment.
In contrast, while realistic models of alignment generically do not control the fundamental CP violating phases, they
force both sin↵ and sin 2� to be small, and should therefore be taken to be comparable [31]. This leads to a much
weaker bound than the more stringent one in [1]. In particular, the bound on �12Q from ✏K and �mK for sin↵ ⇠ sin 2�
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FIG. 3: Squark mass limits in three phenomenologically interesting scenarios with non-degenerate first- and second-generation
squarks. The left panel contains the least constrained scenario, with a single second-generation squark flavor split from all others;
the middle panel corresponds to an alignment-type scenario with first-generation squarks split from the second-generation. The
shaded blue region is excluded by flavor and CP violation constraints which apply to electroweak doublet squarks only, while
the singlet spectrum remains completely unconstrained; the right panel corresponds to an MFV-type scenario with split up-type
and down-type singlets, and doublets formally decoupled. The red dashed (dotted) lines represent the exclusion contour if the
LO mixed up-down squark production cross section is multiplied by a K-factor of 1.5 (2.0).

plot include the full dependence on the squark masses,
crucial when the splitting is large [29]. Although the sin-
glet squarks are kept degenerate with the corresponding
doublets for simplicity, their splittings are unconstrained
by flavor, and they could also be decoupled, resulting
in weaker LHC bounds (corresponding to the contour
�/�lim ⇠ 2), with unchanged flavor bounds. The right-
hand panel contains the limits in an MFV-type scenario,
with split up-type and down-type singlets, and doublets
formally decoupled. The red dashed (dotted) lines rep-
resent the exclusion contour if the LO mixed up-down
squark production cross section is multiplied by a K-
factor of 1.5 (2.0).

The surprisingly weak limits, in particular for squarks
of the second generation, demonstrate how ine↵ective
current searches are for light squarks. Re-optimizing
the ATLAS 2-6 jets plus MET search using only the
me↵ cut is not e↵ective: while the background grows
like m6

e↵ , the signal grows much more slowly, ensuring
that decreasing the me↵ cut makes things worse. It is
possible that the limits would improve on performing ei-
ther a full re-optimization including all cut variables, or
a shape analysis; such a study, however, is beyond the
scope of this paper. Instead, in Fig. 4, we compare the
limits for squark cross sections from various 7 TeV AT-
LAS and CMS jets plus MET searches (which have limits
for degenerate squarks that are competetive with those
of recent 8 TeV searches [33, 34]). We find indeed that
the most stringent bounds come from the more complex
shape-based analyses, such as the CMS razor search.

Conclusion: We have argued that a combination of
reduced e�ciencies and suppression due to PDFs leads
to constraints on non-degenerate squark masses (for the
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FIG. 4: Comparison between upper limits on squark pair-
production cross sections with a decoupled gluino and mass-
less neutralino, from 7TeV 5 fb�1 ATLAS and CMS jets plus
MET searches [15, 30–32]. We use the o�cial experimental
limits, except for the ATLAS search where we use our esti-
mate of the limit, simulating the search with ATOM (solid)
and PGS (dotted).

first two generations) that are significantly weaker than
those assuming eightfold degeneracy. For instance, an
O(400GeV) squark belonging to the second generation
can be buried in the LHC jets plus MET data. In the
above analysis we have neglected for simplicity the e↵ects
of squark mixing, which could be sizable in alignment
models. In addition, our reinterpreted limits, while as-
suming the bino is the lightest SUSY particle (LSP), are
still applicable for singlino or gravitino LSPs, or when ad-
ditional electroweak (e.g. higgsinos) and leptonic states
are present, but do not drastically alter the light squark
branching ratios. In spite of the dramatic increase of
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LO mixed up-down squark production cross section is multiplied by a K-factor of 1.5 (2.0).

plot include the full dependence on the squark masses,
crucial when the splitting is large [29]. Although the sin-
glet squarks are kept degenerate with the corresponding
doublets for simplicity, their splittings are unconstrained
by flavor, and they could also be decoupled, resulting
in weaker LHC bounds (corresponding to the contour
�/�lim ⇠ 2), with unchanged flavor bounds. The right-
hand panel contains the limits in an MFV-type scenario,
with split up-type and down-type singlets, and doublets
formally decoupled. The red dashed (dotted) lines rep-
resent the exclusion contour if the LO mixed up-down
squark production cross section is multiplied by a K-
factor of 1.5 (2.0).

The surprisingly weak limits, in particular for squarks
of the second generation, demonstrate how ine↵ective
current searches are for light squarks. Re-optimizing
the ATLAS 2-6 jets plus MET search using only the
me↵ cut is not e↵ective: while the background grows
like m6

e↵ , the signal grows much more slowly, ensuring
that decreasing the me↵ cut makes things worse. It is
possible that the limits would improve on performing ei-
ther a full re-optimization including all cut variables, or
a shape analysis; such a study, however, is beyond the
scope of this paper. Instead, in Fig. 4, we compare the
limits for squark cross sections from various 7 TeV AT-
LAS and CMS jets plus MET searches (which have limits
for degenerate squarks that are competetive with those
of recent 8 TeV searches [33, 34]). We find indeed that
the most stringent bounds come from the more complex
shape-based analyses, such as the CMS razor search.

Conclusion: We have argued that a combination of
reduced e�ciencies and suppression due to PDFs leads
to constraints on non-degenerate squark masses (for the
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FIG. 4: Comparison between upper limits on squark pair-
production cross sections with a decoupled gluino and mass-
less neutralino, from 7TeV 5 fb�1 ATLAS and CMS jets plus
MET searches [15, 30–32]. We use the o�cial experimental
limits, except for the ATLAS search where we use our esti-
mate of the limit, simulating the search with ATOM (solid)
and PGS (dotted).

first two generations) that are significantly weaker than
those assuming eightfold degeneracy. For instance, an
O(400GeV) squark belonging to the second generation
can be buried in the LHC jets plus MET data. In the
above analysis we have neglected for simplicity the e↵ects
of squark mixing, which could be sizable in alignment
models. In addition, our reinterpreted limits, while as-
suming the bino is the lightest SUSY particle (LSP), are
still applicable for singlino or gravitino LSPs, or when ad-
ditional electroweak (e.g. higgsinos) and leptonic states
are present, but do not drastically alter the light squark
branching ratios. In spite of the dramatic increase of
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FIG. 3: Squark mass limits in three phenomenologically interesting scenarios with non-degenerate first- and second-generation
squarks. The left panel contains the least constrained scenario, with a single second-generation squark flavor split from all others;
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LO mixed up-down squark production cross section is multiplied by a K-factor of 1.5 (2.0).

plot include the full dependence on the squark masses,
crucial when the splitting is large [29]. Although the sin-
glet squarks are kept degenerate with the corresponding
doublets for simplicity, their splittings are unconstrained
by flavor, and they could also be decoupled, resulting
in weaker LHC bounds (corresponding to the contour
�/�lim ⇠ 2), with unchanged flavor bounds. The right-
hand panel contains the limits in an MFV-type scenario,
with split up-type and down-type singlets, and doublets
formally decoupled. The red dashed (dotted) lines rep-
resent the exclusion contour if the LO mixed up-down
squark production cross section is multiplied by a K-
factor of 1.5 (2.0).

The surprisingly weak limits, in particular for squarks
of the second generation, demonstrate how ine↵ective
current searches are for light squarks. Re-optimizing
the ATLAS 2-6 jets plus MET search using only the
me↵ cut is not e↵ective: while the background grows
like m6

e↵ , the signal grows much more slowly, ensuring
that decreasing the me↵ cut makes things worse. It is
possible that the limits would improve on performing ei-
ther a full re-optimization including all cut variables, or
a shape analysis; such a study, however, is beyond the
scope of this paper. Instead, in Fig. 4, we compare the
limits for squark cross sections from various 7 TeV AT-
LAS and CMS jets plus MET searches (which have limits
for degenerate squarks that are competetive with those
of recent 8 TeV searches [33, 34]). We find indeed that
the most stringent bounds come from the more complex
shape-based analyses, such as the CMS razor search.

Conclusion: We have argued that a combination of
reduced e�ciencies and suppression due to PDFs leads
to constraints on non-degenerate squark masses (for the
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MET searches [15, 30–32]. We use the o�cial experimental
limits, except for the ATLAS search where we use our esti-
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first two generations) that are significantly weaker than
those assuming eightfold degeneracy. For instance, an
O(400GeV) squark belonging to the second generation
can be buried in the LHC jets plus MET data. In the
above analysis we have neglected for simplicity the e↵ects
of squark mixing, which could be sizable in alignment
models. In addition, our reinterpreted limits, while as-
suming the bino is the lightest SUSY particle (LSP), are
still applicable for singlino or gravitino LSPs, or when ad-
ditional electroweak (e.g. higgsinos) and leptonic states
are present, but do not drastically alter the light squark
branching ratios. In spite of the dramatic increase of
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So far: case #1 (scharm->charm searches) for interesting, high pT,      
heavy flavor phys., not directly linked to naturalness. 

Next: a slide per two other cases, potentially linked to naturalness:
(i) impact of squark flavor violation on stop searches;
(ii) impact of composite (light) fermions on Higgs; 

Delaunay, Grojean & GP, to appear.

Blanke, Giudice, Paride, GP & Zupan, to appear.

The Battle for Naturalness

sun
moon

• Higgs mass & EW scale are ultra sensitive to quantum corrections. 

 The top & the fine tuning problem

Largest contributions are due to the top couplings.

    085  |  

על הבעיה הדמיונית הנ"ל, אם ניתן להראות שחיים על כדור הארץ לא 
ייתכנו כלל אם לא יתקיים הקשר הייחודי והנדיר בין מסלול הירח סביב 
ידוע  (למשל,  שלהם  והרדיוסים  השמש  סביב  הארץ  למסלול  הארץ 
שהירח מסייע לייצוב האקלים על פני כדור הארץ). כלומר, אם לא היה 
מתקיים יחס כזה בדיוק בין השמש, הירח וכדור הארץ, ממילא לא היינו 
כאן ולא יכולנו לזהות ולגלות אותו. מדובר בכוונון עדין שרק בזכותו יש 

חיים על כדור הארץ, והעולם שלנו לא יכול היה להיראות אחרת. 

בעיית הקבוע הקוסמולוגי
כמו שכבר ציינו, הכוונון העדין קשור גם לנושא הכוח החלש וגם 
כפי  זו,  בעיה  בקצרה  להבין  ננסה  הקוסמולוגי.  הקבוע  לשאלת 
הקוסמולוגי  הקבוע  בהקשר  התיאורטית  בפיזיקה  מטופלת  שהיא 

(המתקשים יכולים לדלג על השורות הבאות אל ראש הפרק הבא).
שמשלבת  שדות,  תורת  על–ידי  מתוארת  חלקיקים  של  פיזיקה 
היחסות  תורת  את  בתוכה 
הקוונטים.  תורת  עם  הפרטית 
פיזיקליים  גדלים  זו,  במסגרת 
הקוסמולוגי  הקבוע  כדוגמת 
(ובמסגרת "המודל הסטנדרטי" 
גם עוצמת הכוח החלש) רגישים באופן דרמטי לאפקטים קוונטיים 
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ייתכנו כלל אם לא יתקיים הקשר הייחודי והנדיר בין מסלול הירח סביב 
ידוע  (למשל,  שלהם  והרדיוסים  השמש  סביב  הארץ  למסלול  הארץ 
שהירח מסייע לייצוב האקלים על פני כדור הארץ). כלומר, אם לא היה 
מתקיים יחס כזה בדיוק בין השמש, הירח וכדור הארץ, ממילא לא היינו 
כאן ולא יכולנו לזהות ולגלות אותו. מדובר בכוונון עדין שרק בזכותו יש 

חיים על כדור הארץ, והעולם שלנו לא יכול היה להיראות אחרת. 

בעיית הקבוע הקוסמולוגי
כמו שכבר ציינו, הכוונון העדין קשור גם לנושא הכוח החלש וגם 
כפי  זו,  בעיה  בקצרה  להבין  ננסה  הקוסמולוגי.  הקבוע  לשאלת 
הקוסמולוגי  הקבוע  בהקשר  התיאורטית  בפיזיקה  מטופלת  שהיא 

(המתקשים יכולים לדלג על השורות הבאות אל ראש הפרק הבא).
שמשלבת  שדות,  תורת  על–ידי  מתוארת  חלקיקים  של  פיזיקה 
היחסות  תורת  את  בתוכה 
הקוונטים.  תורת  עם  הפרטית 
פיזיקליים  גדלים  זו,  במסגרת 
הקוסמולוגי  הקבוע  כדוגמת 
(ובמסגרת "המודל הסטנדרטי" 
גם עוצמת הכוח החלש) רגישים באופן דרמטי לאפקטים קוונטיים 

(הנקראים תיקונים קרינתיים), וערכם מוגדר רק כאשר אפקטים 
אלו נלקחים בחשבון.

לדוגמה, תופעות הקשורות לכבידה קוונטית צפויות להתאפיין בסקלת 
 10109eV4 מסת פלנק השקולה למנת צפיפות אנרגיה פנטסטית של
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זו. אבוי, כי כמו שמתואר בהמשך, ערך זה של הקבוע הקוסמולוגי 
גדול פי 10 בחזקת 120 מגודלו הנצפה במדידות של הקבוע, השווה 

 .(0.001eV)4 בערך למילי אלקטרון–וולט ברביעית
יוצא מכך שעלינו להוסיף לתיאוריה שלנו קבוע נוסף מסדר גודל 
של מיליארד–גוגול אלקטרון–וולט ברביעית, ובסימן הפוך לתרומה 
המצופה מהתיקונים הקוונטיים, כך ששתי התרומות האסטרונומיות 
בגודלן יבטלו זו את זו עד כדי השארית הקטנטנה המתאימה לתצפית 
- כמו במקרה הדמיוני של גודלם הנצפה של השמש והירח. בצורה 

סכמטית, אם כן, הכוונון העדין של הקבוע הקוסמולוגי נראה כך: 
 

(0.001eV)4 = (10000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000
0000000000000000000.000000000001 - 1000000000000000
000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000) eV4

כינוי שניתן על–ידי פיזיקאים של 
אנרגיות גבוהות לתיאוריה המקובלת 

כיום, אשר מתארת את הכוחות 
הבסיסיים והחלקיקים היסודיים 

המרכיבים את עולמנו.   

מדענים נבוכים  לנוכח החפיפה המדוייקת של הירח את השמש. 
אנלוגיה לכוונון העדין בעולם הדמיוני

<<

The moon subtends an angle of ~ 0.54° while the sun of ~ 0.52°.

What if they were equal to 1:1032 ??

It would raise two questions:
(i) What set their precise distance?  <=> Tuning problem ().
(ii) Why perturbations not destabilize the system? <=> Fine tuning problem

(why is �⇥/⇥
max

⌧ 1 ?)
(why is m2

H/m2
Pl ⌧ 1 ?)
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♦ Flavor: only                              sizable mixing is allowed.  

What is the impact of adding flavor violation on stop 
searches ? (flavored naturalness)

Blanke, Giudice, Paride, GP & Zupan, in preparation.

Figure 1. Quadratically divergent one-loop contribution to the Higgs mass parameter in the SM

(a), canceled by scalar superpartner contributions in a SUSY model (b).

I. INTRODUCTION

The recent discovery of a Higgs-like boson at the LHC, while being a breakthrough in

the understanding of electroweak symmetry breaking (EWSB), leaves a lot of questions

unanswered. One of the most pressing problems is the stabilization of the EWSB scale,

which in the Standard Model requires an unnaturally fine-tuned cancellation between tree-

level and loop contributions to the Higgs potential. One of the most popular solutions to

this problem is supersymmetry, which allows to cancel the dangerous quadratically divergent

contributions from the SM particles by their respective superpartners with opposite spin-

statistics. Most important from the point of view of naturalness is the cancellation of

the top quadratic divergence, which is governed by the large top Yukawa coupling. In

supersymmetry this contribution is canceled by the corresponding loop contribution of its

supersymmetric partners, the stops, as depicted in Figure 1.

While the cancellation of the quadratically divergent contribution is independent of the

stop masses, the remaining logarithmically divergent contributions are mass dependent—

therefore naturalness in the Higgs potential generally requires light stops. This common lore

however is being put under severe pressure by the non-observation of stops at the LHC and

the increased bounds on their masses.

This simplified picture however contains the intrinsic assumption of complete alignment

between the up quark and up squark mass bases. While this is a very good approximation

for the left-handed sector, where due to the SU(2)L symmetry the stringent constraints from

K and B decays are relevant, the situation is di↵erent in the right-handed up sector. Here

the only relevant constraints are related to the D system so that the third generation is

much less constrained. In fact it is su�cient to assume the 12 and 13 mixings to be samll in

order to comply with data; the mixing angle ✓R
23

describing stop-scharm mixing. Constraints

from flavor violating top decays on the other hand are still fairly weak. There should be

2

♦ Naively sounds crazy ... 

˜tR � ũR or

˜tR � c̃R
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What is the impact of adding flavor violation on stop 
searches ? (flavored naturalness)

Blanke, Giudice, Paride, GP & Zupan, in preparation.

♦ Flavor: only                              sizable mixing is allowed.  

We see that the presence of a large A term always increases the fine-tuning. Therefore in

order to keep the fine-tuning as small as possible we neglect At in what follows. At some

stage we should relax this condition and study the implications.

The presence of flavor mixing is manifested by o↵-diagonal terms in the squark mass

matrix in the basis where the Yukawa couplings are diagonal. The top Yukawa coupling

then projects out the 33 elements of M2

Q and M2

u. Since the strong constraints from B

physics preclude sizable mixing in the left-handed squark sector, only the contribution from

the right-handed stop gets modified. Assuming negligible 13 mixing we end up with

�m2

Hu = �3y2t
8⇡2

�
m2

Q3

+ (M2

u)33 cos
2 ✓R

23

+ (M2

u)22 sin
2 ✓R

23

�
log

⇤

m
˜t

. (2)

MB: I am still confused about how to get from the soft masses and mixing angles

to the physical stop and charm masses and their mixing angle. Any insight on

this from your side?

In order to understand whether the presence of flavor violation helps to reduce the amount

of fine-tuning in m2

Hu it is necessary to analayze the current bounds on mc̃R and m
˜tR

as a

function of ✓R
23

. This is the aim of the next section.

III. COLLIDER CONSTRAINTS IN THE PRESENCE OF FLAVOR MIXING

We use searches for squark pair production in tt̄ +MET and jets+MET final states to

place bounds on m̃
1

, m̃
2

and the mixing angle ✓R
23

. Defining c ⌘ cos ✓R
23

and s = sin ✓R
23

, we

construct a �2

�2 =

✓
c4�(m

1

) + rt¯ts4�(m2

)

��t¯t(m1

)

◆
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+
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) + rjetsc4�(m2
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��jets(m1

)

◆
2

, (3)

where ��f (m1

) is the 1� error deduced from the measured 95%CL bounds assuming Gaus-

sian errors and zero mean (��f ⌘ �95%CL
f /1.96), and the rf ⌘ ��f (m1

)/��f (m2

) is the

ratio of experimental sensitivities to squarks with masses m
1

and m
2

and is a naive guess for

how much the higher mass squarks contribute to the analysis. Note that this guesstimate

has the right limit when m
1

= m
2

. Also it is correct if ��f is mi independent, as then these

are just counting experiments and the higher mass events are fully counted. In Eq. (3)

we give the higher mass events a higher weight (rf > 1) to account for larger experimental

4
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(a), canceled by scalar superpartner contributions in a SUSY model (b).

I. INTRODUCTION

The recent discovery of a Higgs-like boson at the LHC, while being a breakthrough in

the understanding of electroweak symmetry breaking (EWSB), leaves a lot of questions

unanswered. One of the most pressing problems is the stabilization of the EWSB scale,

which in the Standard Model requires an unnaturally fine-tuned cancellation between tree-

level and loop contributions to the Higgs potential. One of the most popular solutions to

this problem is supersymmetry, which allows to cancel the dangerous quadratically divergent

contributions from the SM particles by their respective superpartners with opposite spin-

statistics. Most important from the point of view of naturalness is the cancellation of

the top quadratic divergence, which is governed by the large top Yukawa coupling. In

supersymmetry this contribution is canceled by the corresponding loop contribution of its

supersymmetric partners, the stops, as depicted in Figure 1.

While the cancellation of the quadratically divergent contribution is independent of the

stop masses, the remaining logarithmically divergent contributions are mass dependent—

therefore naturalness in the Higgs potential generally requires light stops. This common lore

however is being put under severe pressure by the non-observation of stops at the LHC and

the increased bounds on their masses.

This simplified picture however contains the intrinsic assumption of complete alignment

between the up quark and up squark mass bases. While this is a very good approximation

for the left-handed sector, where due to the SU(2)L symmetry the stringent constraints from

K and B decays are relevant, the situation is di↵erent in the right-handed up sector. Here

the only relevant constraints are related to the D system so that the third generation is

much less constrained. In fact it is su�cient to assume the 12 and 13 mixings to be samll in

order to comply with data; the mixing angle ✓R
23

describing stop-scharm mixing. Constraints

from flavor violating top decays on the other hand are still fairly weak. There should be

2

c̃R

♦ Naively sounds crazy as worsening the fine tuning problem.  

♦ However, just established the scharm can be light.  

♦ The                          production is suppressed by              .  ”t̃R t̃⇤R” ! tR t⇤R
�
cos ✓R23

�4

Potentially leading to improve naturalness.

˜tR � ũR or

˜tR � c̃R
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What is the impact of adding flavor violation on stop 
searches ? (flavored naturalness)

Blanke, Giudice, Paride, GP & Zupan, in preparation.

♦ Flavor: only                              sizable mixing is allowed.  

We see that the presence of a large A term always increases the fine-tuning. Therefore in

order to keep the fine-tuning as small as possible we neglect At in what follows. At some

stage we should relax this condition and study the implications.

The presence of flavor mixing is manifested by o↵-diagonal terms in the squark mass

matrix in the basis where the Yukawa couplings are diagonal. The top Yukawa coupling

then projects out the 33 elements of M2

Q and M2
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I. INTRODUCTION

The recent discovery of a Higgs-like boson at the LHC, while being a breakthrough in

the understanding of electroweak symmetry breaking (EWSB), leaves a lot of questions

unanswered. One of the most pressing problems is the stabilization of the EWSB scale,

which in the Standard Model requires an unnaturally fine-tuned cancellation between tree-

level and loop contributions to the Higgs potential. One of the most popular solutions to

this problem is supersymmetry, which allows to cancel the dangerous quadratically divergent

contributions from the SM particles by their respective superpartners with opposite spin-

statistics. Most important from the point of view of naturalness is the cancellation of

the top quadratic divergence, which is governed by the large top Yukawa coupling. In

supersymmetry this contribution is canceled by the corresponding loop contribution of its

supersymmetric partners, the stops, as depicted in Figure 1.

While the cancellation of the quadratically divergent contribution is independent of the

stop masses, the remaining logarithmically divergent contributions are mass dependent—

therefore naturalness in the Higgs potential generally requires light stops. This common lore

however is being put under severe pressure by the non-observation of stops at the LHC and

the increased bounds on their masses.

This simplified picture however contains the intrinsic assumption of complete alignment

between the up quark and up squark mass bases. While this is a very good approximation

for the left-handed sector, where due to the SU(2)L symmetry the stringent constraints from

K and B decays are relevant, the situation is di↵erent in the right-handed up sector. Here

the only relevant constraints are related to the D system so that the third generation is

much less constrained. In fact it is su�cient to assume the 12 and 13 mixings to be samll in

order to comply with data; the mixing angle ✓R
23

describing stop-scharm mixing. Constraints

from flavor violating top decays on the other hand are still fairly weak. There should be

2

c̃R

♦ Naively sounds crazy as worsening the fine tuning problem.  

♦ However, just established the scharm can be light.  

♦ The                          production is suppressed by              .  ”t̃R t̃⇤R” ! tR t⇤R
�
cos ✓R23

�4

Potentially leading to improve naturalness.

Case # 2:
motivates search for RH light scharms

& mixed stop-scharm production
to constrain flavor naturalness

˜tR � ũR or

˜tR � c̃R
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Composite light quarks & pseudo Goldstone boson Higgs

♦ On the other hand strong sensitivity to RH light quark 

compositeness:

♦ General: strong sensitivity of Higgs coupling to its 

nonlinearity,  but interestingly not to top compositeness. 

Generically light quark with a relatively sizable degree of compositeness would yield large fla-
vor violating effects, unless the relevant new physics flavor spurions are aligned onto the SM
Yukawas. In partial compositeness models, this alignment boils down to consider the strong
dynamics to be invariant under all or a subset of the composite flavor symmetries. (See e.g.
Refs [12, 14, 15] for explicit constructions.) The net effect on Higgs couplings of course depends
on the number of composite flavors and their respective degree of compositeness. We choose
not to commit to a specific construction here and instead we simply assume that a certain
number of RH flavors are partially composite.

Resonances associated with composite light generation quarks impact Higgs physics to
leading order through Higgs couplings to gluons and photons. Therefore we focus only on the
Higgs signal strengths in the γγ, ZZ∗ and WW ∗ channels which are best measured at present
and where the above effects are more pronounced. The Higgs signal strength µi is defined as
the product of the production cross-section times the branching ratio into final states i = γγ,
ZZ∗ and WW ∗ relative to the SM one

µi =

∑
j σj→h × Brh→i∑
j σ

SM
j→h × BrSMh→i

, (24)

where
∑

j sums over all Higgs production modes, the most important one being gluon fusion.
Assuming gluon fusion dominance 8 the signal strengths factorize as

µi " Rgg ×Ri , (25)

whereRgg ≡ σgg→h/σSM
gg→h is the gluon fusion production cross-section ratio andRi ≡ Brh→i/Br

SM
h→i

are the branching ratio ratios into the final states i.

3.1 Higgs Production

For the r = 5 case, we find the following correction to the gluon fusion production cross-section
(in the heavy top mass limit, mt $ mh)

RMCHM5
gg =

∣∣∣∣∣∣
1− 3

2
ξ +

Nlight∑

i=1

s2Riε2i (1 + 2ri)

∣∣∣∣∣∣

2

, (26)

where the sum runs over the Nlight = 5 light quark flavors, whose individual degree of partial RH
compositeness is sRi . We introduced the dimensionless parameters ε ≡ Y v/M and r ≡ gΨ/Y ,
where gΨ ≡ M/f is a fermionic strong coupling constant. If all fermion couplings are of
comparable size we expect r ∼ O(1) and ε = (v/f)(Y/gΨ) ∼ O(

√
ξ). Note that the sign of r

is unknown a priori). However −1 ! r ! 0 is disfavored as the mass of the resonance mixing
with the elementary RH quark, which is (M + Y f)/

√
1− s2R = M(1 + r−1)/

√
1− s2R (up to

EWSB contributions), would become unacceptably light (while keeping M ∼ O(TeV)). The
first new physics term in Eq. (26) is the contribution of pure Higgs non-linearities and of the top
partners, which do not depend on their spectrum. The latter does depend on the top partner
representation through cΣy , but for a all three cases r = 5,10,14 we find the O(ξ) contribution
to Rgg always leads to a suppress Higgs production cross-section. The last term in Eq. (26) is
the contribution from partners of the composite RH light quarks, which for r = 5 can either

8The Higgs coupling to EW bosons are potentially modified due to Higgs non-linearities and mixing with
vector resonances. However as we will see the former effect is only mild, of O(ξ), and the latter effect is
negligible since vector resonances are pushed above " 3TeV in order to pass EW precision measurements
(baring cancellations). Thus, we do not expect VBF and qq̄ production modes to be significantly changed
compared to the SM and we henceforth ignore them.

8
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vor violating effects, unless the relevant new physics flavor spurions are aligned onto the SM
Yukawas. In partial compositeness models, this alignment boils down to consider the strong
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Figure 2: Rgg ratio of gluon fusion Higgs production cross-section in MCHM5 for one RH
composite flavor as a function of ξ = v2/f 2, the RH elementary/composite mixing sR and
ε = Y v/M . We considered two distinct cases where r = gΨ/Y = 1 [left] and r = −2 [right].
Red (black) contours correspond to enhancement (suppression) relative to the SM cross-section.

enhance or further suppress the gluon fusion cross-section, depending on the sign of 1 + 2r.
Therefore, for r > 0 and a not too small εsR, there is a region where the two effects balance
and Rgg " 1 can be achieved without too much decoupling the strong dynamics (ξ → 0), even
with only composite RH quark. We show this effect in Fig 2 in a limit where only one RH
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In MCHM5 we find the following correction to the h → γγ branching ratio
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where ASM ≡ Q2
u − 7

4A1(τW ) " −6.5 and Qi is the electric charge, Qi = Qu = 2/3 for up-type
and Qi = Qd = −1/3 for down-type quarks. Since ASM < 0 and 7

8A1(τW ) − 3
2Q

2
u " 0.37 > 0,

the non-linearities effect always lead to a suppressed branching ratio into diphotons. Moreover,
light RH quark compositeness tends to further suppress Rγγ whenever Rgg is enhanced. On
the other hand the h → WW ∗, ZZ∗ branching ratios are only corrected at tree-level by Higgs
non-linearities 9

RMCHM5
WW ∗ = RMCHM5

ZZ∗ =

∣∣∣∣1−
1

2
ξ

∣∣∣∣
2

, (28)

9Both branching ratios into WW ∗ and ZZ∗ are obviously the same as a result of the built-in custodial
symmetry.

9

Falkowski (07); Azatov & Galloway (11).
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Figure 3: Higgs signal strengths µγγ [left] and µZZ,WW [right] in MCHM5 for one RH composite
flavor as a function of ξ = v2/f 2, the RH elementary/composite mixing sR and ε = Y v/M . We
set r = gΨ/Y = 1. For the diphoton signal strength [left] we considered two cases where the
RH composite flavor is either a up-type (black contours) or down-type (red contours) quark.

whose effect also reduces the branching ratios into gauge bosons. Note that

3.3 Higgs signal strengths

We argued above that RH compositeness typically leads to an enhancement of the Higgs produc-
tion cross-section, while, on the other hand, Higgs branching ratios in diphotons and dibosons
tend to be suppressed. Thus, there is a region where the two effect cancel against each other,
leaving Higgs signal strengths close to their standard predictions. We show on the left panel of
Fig. 3 the expected µγγ in MCHM5 with one universal RH light flavor, either up- or down-type.
Note that since down-type quarks contributions to Rγγ are suppressed by Q2

d/Q
2
u = 1/4 relative

to up-type ones, the gluon fusion enhancement is less compensated at large RH mixing. The
expected µZZ = µWW in MCHM5 with one RH composite flavor are shown on the right panel
of Fig. 3.
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A.1 “Pion” Lagrangian

We considered two-site models whose composite sector is a non-linear σ model (nlσm) with
global SO(5)×U(1)X symmetry. The non-linear Σ field is

Σ = Σ0 exp(−i
√
2hâT â/f) , Σ0 = (0, 0, 0, 0, 1) , (29)
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Generically light quark with a relatively sizable degree of compositeness would yield large fla-
vor violating effects, unless the relevant new physics flavor spurions are aligned onto the SM
Yukawas. In partial compositeness models, this alignment boils down to consider the strong
dynamics to be invariant under all or a subset of the composite flavor symmetries. (See e.g.
Refs [12, 14, 15] for explicit constructions.) The net effect on Higgs couplings of course depends
on the number of composite flavors and their respective degree of compositeness. We choose
not to commit to a specific construction here and instead we simply assume that a certain
number of RH flavors are partially composite.

Resonances associated with composite light generation quarks impact Higgs physics to
leading order through Higgs couplings to gluons and photons. Therefore we focus only on the
Higgs signal strengths in the γγ, ZZ∗ and WW ∗ channels which are best measured at present
and where the above effects are more pronounced. The Higgs signal strength µi is defined as
the product of the production cross-section times the branching ratio into final states i = γγ,
ZZ∗ and WW ∗ relative to the SM one

µi =

∑
j σj→h × Brh→i∑
j σ

SM
j→h × BrSMh→i

, (24)

where
∑

j sums over all Higgs production modes, the most important one being gluon fusion.
Assuming gluon fusion dominance 8 the signal strengths factorize as

µi " Rgg ×Ri , (25)

whereRgg ≡ σgg→h/σSM
gg→h is the gluon fusion production cross-section ratio andRi ≡ Brh→i/Br

SM
h→i

are the branching ratio ratios into the final states i.

3.1 Higgs Production

For the r = 5 case, we find the following correction to the gluon fusion production cross-section
(in the heavy top mass limit, mt $ mh)

RMCHM5
gg =

∣∣∣∣∣∣
1− 3

2
ξ +

Nlight∑

i=1

s2Riε2i (1 + 2ri)

∣∣∣∣∣∣

2

, (26)

where the sum runs over the Nlight = 5 light quark flavors, whose individual degree of partial RH
compositeness is sRi . We introduced the dimensionless parameters ε ≡ Y v/M and r ≡ gΨ/Y ,
where gΨ ≡ M/f is a fermionic strong coupling constant. If all fermion couplings are of
comparable size we expect r ∼ O(1) and ε = (v/f)(Y/gΨ) ∼ O(

√
ξ). Note that the sign of r

is unknown a priori). However −1 ! r ! 0 is disfavored as the mass of the resonance mixing
with the elementary RH quark, which is (M + Y f)/

√
1− s2R = M(1 + r−1)/

√
1− s2R (up to

EWSB contributions), would become unacceptably light (while keeping M ∼ O(TeV)). The
first new physics term in Eq. (26) is the contribution of pure Higgs non-linearities and of the top
partners, which do not depend on their spectrum. The latter does depend on the top partner
representation through cΣy , but for a all three cases r = 5,10,14 we find the O(ξ) contribution
to Rgg always leads to a suppress Higgs production cross-section. The last term in Eq. (26) is
the contribution from partners of the composite RH light quarks, which for r = 5 can either

8The Higgs coupling to EW bosons are potentially modified due to Higgs non-linearities and mixing with
vector resonances. However as we will see the former effect is only mild, of O(ξ), and the latter effect is
negligible since vector resonances are pushed above " 3TeV in order to pass EW precision measurements
(baring cancellations). Thus, we do not expect VBF and qq̄ production modes to be significantly changed
compared to the SM and we henceforth ignore them.
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Delaunay, Grojean & GP, to appear.

sR: level of compositeness
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Figure 2: Rgg ratio of gluon fusion Higgs production cross-section in MCHM5 for one RH
composite flavor as a function of ξ = v2/f 2, the RH elementary/composite mixing sR and
ε = Y v/M . We considered two distinct cases where r = gΨ/Y = 1 [left] and r = −2 [right].
Red (black) contours correspond to enhancement (suppression) relative to the SM cross-section.

enhance or further suppress the gluon fusion cross-section, depending on the sign of 1 + 2r.
Therefore, for r > 0 and a not too small εsR, there is a region where the two effects balance
and Rgg " 1 can be achieved without too much decoupling the strong dynamics (ξ → 0), even
with only composite RH quark. We show this effect in Fig 2 in a limit where only one RH
flavor is composite, but it is straightforward to rescale the result in order to account for more
RH composite flavors. We consider two distinct cases where r = 1 (left panel) and r = −2
(right panel). For elementary RH light quarks, Higgs non-linearities yield a large suppression
of the gluon fusion cross-section of e.g ∼ 50% for a moderately small ξ " 0.2 (f " 550GeV).
On the other hand, if one or several RH light quarks are relatively composite objects, large
enhancements are expected up to a factor of a few. Note that large enhancements can also be
obtained for r % −1 since in this case the resonance contribution starts dominating over the
SM one.

3.2 Higgs decay widths

In MCHM5 we find the following correction to the h → γγ branching ratio

RMCHM5
γγ =

∣∣∣∣∣∣
1 +A−1

SM




(
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8
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2
Q2

u

)
ξ +

Nlight∑

i=1

Q2
i s

2
Riε2i (1 + 2ri)





∣∣∣∣∣∣

2

(27)

where ASM ≡ Q2
u − 7

4A1(τW ) " −6.5 and Qi is the electric charge, Qi = Qu = 2/3 for up-type
and Qi = Qd = −1/3 for down-type quarks. Since ASM < 0 and 7

8A1(τW ) − 3
2Q

2
u " 0.37 > 0,

the non-linearities effect always lead to a suppressed branching ratio into diphotons. Moreover,
light RH quark compositeness tends to further suppress Rγγ whenever Rgg is enhanced. On
the other hand the h → WW ∗, ZZ∗ branching ratios are only corrected at tree-level by Higgs
non-linearities 9

RMCHM5
WW ∗ = RMCHM5

ZZ∗ =

∣∣∣∣1−
1

2
ξ

∣∣∣∣
2

, (28)

9Both branching ratios into WW ∗ and ZZ∗ are obviously the same as a result of the built-in custodial
symmetry.
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Figure 3: Higgs signal strengths µγγ [left] and µZZ,WW [right] in MCHM5 for one RH composite
flavor as a function of ξ = v2/f 2, the RH elementary/composite mixing sR and ε = Y v/M . We
set r = gΨ/Y = 1. For the diphoton signal strength [left] we considered two cases where the
RH composite flavor is either a up-type (black contours) or down-type (red contours) quark.
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3.3 Higgs signal strengths

We argued above that RH compositeness typically leads to an enhancement of the Higgs produc-
tion cross-section, while, on the other hand, Higgs branching ratios in diphotons and dibosons
tend to be suppressed. Thus, there is a region where the two effect cancel against each other,
leaving Higgs signal strengths close to their standard predictions. We show on the left panel of
Fig. 3 the expected µγγ in MCHM5 with one universal RH light flavor, either up- or down-type.
Note that since down-type quarks contributions to Rγγ are suppressed by Q2
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2
u = 1/4 relative

to up-type ones, the gluon fusion enhancement is less compensated at large RH mixing. The
expected µZZ = µWW in MCHM5 with one RH composite flavor are shown on the right panel
of Fig. 3.
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Generically light quark with a relatively sizable degree of compositeness would yield large fla-
vor violating effects, unless the relevant new physics flavor spurions are aligned onto the SM
Yukawas. In partial compositeness models, this alignment boils down to consider the strong
dynamics to be invariant under all or a subset of the composite flavor symmetries. (See e.g.
Refs [12, 14, 15] for explicit constructions.) The net effect on Higgs couplings of course depends
on the number of composite flavors and their respective degree of compositeness. We choose
not to commit to a specific construction here and instead we simply assume that a certain
number of RH flavors are partially composite.

Resonances associated with composite light generation quarks impact Higgs physics to
leading order through Higgs couplings to gluons and photons. Therefore we focus only on the
Higgs signal strengths in the γγ, ZZ∗ and WW ∗ channels which are best measured at present
and where the above effects are more pronounced. The Higgs signal strength µi is defined as
the product of the production cross-section times the branching ratio into final states i = γγ,
ZZ∗ and WW ∗ relative to the SM one

µi =

∑
j σj→h × Brh→i∑
j σ

SM
j→h × BrSMh→i

, (24)

where
∑

j sums over all Higgs production modes, the most important one being gluon fusion.
Assuming gluon fusion dominance 8 the signal strengths factorize as

µi " Rgg ×Ri , (25)

whereRgg ≡ σgg→h/σSM
gg→h is the gluon fusion production cross-section ratio andRi ≡ Brh→i/Br

SM
h→i

are the branching ratio ratios into the final states i.

3.1 Higgs Production

For the r = 5 case, we find the following correction to the gluon fusion production cross-section
(in the heavy top mass limit, mt $ mh)

RMCHM5
gg =

∣∣∣∣∣∣
1− 3

2
ξ +

Nlight∑

i=1

s2Riε2i (1 + 2ri)

∣∣∣∣∣∣

2

, (26)

where the sum runs over the Nlight = 5 light quark flavors, whose individual degree of partial RH
compositeness is sRi . We introduced the dimensionless parameters ε ≡ Y v/M and r ≡ gΨ/Y ,
where gΨ ≡ M/f is a fermionic strong coupling constant. If all fermion couplings are of
comparable size we expect r ∼ O(1) and ε = (v/f)(Y/gΨ) ∼ O(

√
ξ). Note that the sign of r

is unknown a priori). However −1 ! r ! 0 is disfavored as the mass of the resonance mixing
with the elementary RH quark, which is (M + Y f)/

√
1− s2R = M(1 + r−1)/

√
1− s2R (up to

EWSB contributions), would become unacceptably light (while keeping M ∼ O(TeV)). The
first new physics term in Eq. (26) is the contribution of pure Higgs non-linearities and of the top
partners, which do not depend on their spectrum. The latter does depend on the top partner
representation through cΣy , but for a all three cases r = 5,10,14 we find the O(ξ) contribution
to Rgg always leads to a suppress Higgs production cross-section. The last term in Eq. (26) is
the contribution from partners of the composite RH light quarks, which for r = 5 can either

8The Higgs coupling to EW bosons are potentially modified due to Higgs non-linearities and mixing with
vector resonances. However as we will see the former effect is only mild, of O(ξ), and the latter effect is
negligible since vector resonances are pushed above " 3TeV in order to pass EW precision measurements
(baring cancellations). Thus, we do not expect VBF and qq̄ production modes to be significantly changed
compared to the SM and we henceforth ignore them.

8

Delaunay, Grojean & GP, to appear.

Case # 3:
right handed composite quarks

=>
excess of heavy flavor jets

sR: level of compositeness
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♦ Already recorded more than 5 million top pairs were 

collected, many more to come.

Gedalia, Isidori, Maltoni, GP, Selvaggi & Soreq (12) 

♦ Window for new way to do precision heavy flavor physics.

♦ The top mass & small width => new type of b factory.

♦ Can define for instance two type of CP asymmetry:
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In addition, we define the following direct CPV asymme-
tries in the diÆerent b and c decay modes:

A

b`

dir

=
° (b! `

°

X)° °
°
b̄! `

+

X

¢

° (b! `

°

X) + °
°
b̄! `

+

X

¢
, (10)

A

c`

dir

=
° (c̄! `

°

X

L

)° ° (c! `

+

X

L

)
° (c̄! `

°

X

L

) + ° (c! `

+

X

L

)
, (11)

A

bc

dir

=
° (b! c X

L

)° °
°
b̄! c̄ X

L

¢

° (b! c X

L

) + °
°
b̄! c̄ X

L

¢
. (12)

where X (X
L

) denotes an inclusive hadronic final state
with no leptons and with both light and charm quarks
(with light quarks only). We assume for simplicity no
direct CPV in b! c c̄. It is straightforward to generalize
the analysis and incorporate this contribution.

Using these definitions, the same-sign lepton asymme-
try in tt̄ events, A

ss

sl

, can be decomposed as follows
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with N

±± being the number of events where the sign of
the lepton that originates from the W and the sign of
the lepton from the b are both ±. In addition, we have
defined

r

q

¥ N

++

q

+ N

°°

q

N

++ + N

°°

, (14)

with q = b, c, cc̄ and N

±±

b,c,cc̄

are the corresponding num-
bers of events coming from Eqs. (2), (3),and (4), respec-
tively, similar to N

±±. These r

q

’s depend on the choice
of the final event selection, designed to enhance the sig-
nal.

Proceeding in a similar way, the opposite-sign lepton
asymmetry in tt̄ events, A

os

sl

, is defined and decomposed
as follows
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where r̃

b

, r̃

c

, and r̃

cc̄

are the corresponding fractions
of events for the decay chains defined in Eqs. (5), (6)
and (7), respectively (the parameters of the opposite-sign
sample are marked with a tilde).

By construction, all the asymmetries in Eqs. (8)–(12)
are phase-convention independent. The mixing asym-
metries can be non-zero either because of CPV in mix-
ing or because of direct CPV in the subsequent decays
of the neutral B

s,d

. On the other hand, the asymme-
tries in Eqs. (10)–(12) are manifestly due to direct CPV
only. The latter are inclusive partonic asymmetries that
should be interpreted as appropriate averages of the cor-
responding exclusive asymmetries involved in a given de-
cay chain. In principle, the diÆerent hadron compositions

in processes with or without mixing (where only the neu-
tral B

s,d

mesons are involved) may lead to diÆerences be-
tween the direct CPV asymmetries appearing in A

ss

sl

and
A

os

sl

. For simplicity we neglect such diÆerences.
The expressions of the asymmetries are greatly simpli-

fied in the limit where we can neglect direct CPV. In this
limit A

b`

dir

= A

bc

dir

= 0 and the mixing asymmetries can be
related to the theoretical parameters describing meson-
antimeson mixing. Following the convention of [4] we
have
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where q

X

and p

X

are the parameters describing the mass
eigenstates in the flavor basis and f

d,s

are the fractions
of b quarks forming B

d,s

mesons.
LHC Sensitivity. The sensitivity of the proposed

measurements can be naively estimated by counting the
expected number of events and deriving the statistical
uncertainty. Systematic uncertainties are not taken into
account here. We consider only the dominant produc-
tion mechanism, namely of top-pairs. In principle, the
contribution of single tops can be incorporated by using
an appropriate data-based normalization to compensate
for the diÆerent production rates of tops and anti-tops at
the LHC. Yet, the statistical gain is small, hence we do
not include such a signal in our analysis.

We focus on events where one of the tops decays semi-
leptonically. The resulting lepton enables to tag the
charges of the b quarks from the top and the anti-top,
such that both can be included in the analysis. The asso-
ciation of each b jet (b-charge association) with the appro-
priate top is done by using the matrix element method,
as discussed below. Note that events with three or more
leptons are rejected (where both b and c decay semi-
leptonically). In principle, one could extend the anal-
ysis to include such finals states; however, their inclusion
makes the analysis more complicated without a signifi-
cant gain in sensitivity.

We use Monte-Carlo tools to study the e±ciencies of
the b-charge association and the kinematical cuts. The
sample of events at

p
s = 14 TeV is generated using

MadGraph/MadEvent 5 v1.5.5 [5], Pyhtia 6.4 [6] and
DELPHES 2.0.3 [7] for the detector response. We select
events with at least one charged lepton (p

T

> 10 GeV)
and four jets (p

T

> 20 GeV), two of which are b-tagged.
It is interesting to note that the requirement of two b jets
ensures that a potential contribution of CPV in t! b de-
cays is absent in the sample.

The number of events in each channel is given by
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In top-pair events where at least one of the tops decays semi-leptonically, the identification of
the lepton charge allows to tag not only the top charge but also that of the subsequent b quark.
In case the b also decays semi-leptonically, the charge of the two leptons can be used to probe CP
violation in heavy flavor mixing and decays. This strategy to measure CP violation is independent
to those adopted so far in experiments, and can already constrain non Standard Model sources of
CP violation with current and near future LHC data. To demonstrate the potential of this method
we construct two CP asymmetries based on same-sign and opposite-sign leptons and estimate their
sensitivities. This proposal opens a new window for doing precision measurements of CP violation
in b and c quark physics via high pT processes at ATLAS and CMS.

Introduction. The copious production of top quarks
at the LHC is usually exploited to explore various top
properties or search for new heavy resonances. However,
it also opens up the possibility to perform flavor precision
measurements. Here we suggest to use the top decay
products in order to probe CP violation (CPV) in bottom
and charm mixing and decays.

All existing analyses of CPV in b-physics rely on a co-
herent production of b° b̄ pairs, either from a decay of a
b ° b̄ resonance or from a gluon splitting, where the to-
tal b flavor charge at production vanishes. However, top
physics gives another source of b’s, and due to the top
large mass and small width, to a good approximation, a
top decay yields a definite non-zero b flavor charge. This
charge can be unambiguously tagged at the time of decay
by the charge of the lepton daughter of the W (originat-
ing from the top). In cases where the b also decays semi-
leptonically, we can construct two CP asymmetries, one
in which the latter lepton and the one from the W are
of the same sign and the other with opposite signs. In
principle, with a good mass resolution one can also use
hadronic decay modes of the b, however, this would be
hard to achieve in the near future at ATLAS and CMS.

To make our discussion more concrete, let us consider
the interesting result obtained by the D0 collaboration at
the Tevatron on the CP-violating like-sign dimuon asym-
metry [1]:

A

b

sl

(D0) = (°7.87± 1.96)£ 10°3

, (1)

which diÆers by 3.8æ from the Standard Model (SM) pre-
diction, A

b

sl

(SM) =
°°3.96+0.15

°0.04

¢ £ 10°4 [2]. The asym-
metries we propose are conceptually similar although
completely independent from A

b

sl

. Similarly to A

b

sl

, our
top-induced CP asymmetries are sensitive to CPV in

B

q

°B

q

mixing (q = d, s) and to possible exotic sources
of direct CPV in b and c decays [3]. As we will show,
these sources appear in diÆerent combinations in the two
top-induced CP asymmetries, providing a powerful tool
to test the origin of the anomalous result in Eq. (1).

Going back to top physics, one can identify three
classes of inclusive top decay chains which produce two
leptons of the same sign:

t! `

+

∫

°
b! b̄

¢! `

+

`

+

X , (2)

t! `

+
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+

`

+

X , (3)

t! `

+

∫

°
b! b̄! c c̄

¢! `

+

`

+

X , (4)

where throughout this paper ` = e, µ and in the process
of Eq. (4) the second `

+ comes from the c quark and the
c̄ decays hadronically. These processes are sensitive to
CPV in B

q

° B

q

mixing, semi-leptonic b and c decays
and b ! c. Similarly, two opposite-sign leptons emerge
from the following processes:
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X , (6)

t! `
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∫ (b! c c̄)! `

+

`

°

X , (7)

where in the last process the `

° originates from the
c̄ quark. Additional negligible contributions via charm
mixing were omitted.

The CP Asymmetries. The following CP asymme-
tries related to B

q

°B

q

mixing are defined:
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°

°
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+ °

°
b̄! b! `

°

X

¢
, (8)

A
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=
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b! b̄! c̄ X
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b̄! b! c X

¢

°
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¢
+ °
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b̄! b! c X

¢
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Conclusions

♦ Light (non-”sups”) squarks maybe buried (regardless of alignment).    

♦ Stop-scharm mixing might lead to improve naturalness.

♦ Ask for new type of SUSY searches, charm tagging important, 

linked to CPV in D mixing, soon to be tested at LHCb.

♦ Interplay between composite PGB physics & presence of light 

composite fermions => motivates improve charm-jet searches.

♦ Top phys. @ ATLAS & CMS => precision heavy flavor phys..
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