HIGGS RATES AND NEW QUARKS

Elisabetta Furlan

Brookhaven National Laboratory

In collaboration with S. Dawson, I. Lewis

zpw2013: particle physics at the LHC era 06/01/13 08:12

zpw the zurich Particle physics in the LHC era phenomenology 2013 workshop

LHC experiments: "habemus Higgs!"

"a light fundamental scalar is not natural": the hierarchy problem

direct

production

many extensions of the Standard Model introduce new particles that can alter the LHC phenomenology (supersymmetry, extra dimensions, little/composite Higgs models,...)

constraints from

➡ direct searches

➡ effects on loop mediated processes (S, T, U parameters, $Z \rightarrow bb$) $Z \rightarrow b\overline{b}$

➡ *measured Higgs rates!*

$$
\frac{\sigma}{\sigma^{SM}} = \begin{cases} 1.4 \pm 0.3 \\ 0.87 \pm 0.23 \end{cases}
$$

$$
\begin{cases}\n1.4 \pm 0.3 \\
0.87 \pm 0.23\n\end{cases}\n\qquad\n\frac{\sigma_{H \to \gamma\gamma}}{\sigma_{H \to \gamma\gamma}^{SM}} = \begin{cases}\n1.8 \pm 0.4 & \text{(ATLAS)} \\
1.6 \pm 0.4 & \text{(CMS)}\n\end{cases}
$$

o the new particles typically

✦ couple to the Higgs boson ✦ mix with the Standard Model top quark, modifying its coupling to the Higgs boson

➡ *can* significantly affect Higgs production and decays

the new particles typically

✦ couple to the Higgs boson ✦ mix with the Standard Model top quark, modifying its coupling to the Higgs boson

➡ *can* significantly affect Higgs production and decays

➡ but.. do they *have to*?

➡ *if* they do, can we use these effects to learn something about their properties?

idea:

A. Pierce, J. Thaler, L.-T. Wang, JHEP 0705:070, 2007

✦ up to dimension six, there are only two operators that describe the effective gluon-Higgs interaction

 $\mathcal{L}=c_1\mathcal{O}_1+c_2\mathcal{O}_2$

 $\sim G^a_{\mu\nu}G^{a,\mu\nu}\log\left(\frac{\Phi^\dagger\Phi}{v^2}\right)$ $\sim G^a_{\mu\nu}G^{a,\mu\nu}\Phi^\dagger\Phi$ ‣ only ggH operator ‣ dimension 6 present in the SM ‣ not present in the SM

✦ they contribute differently to Higgs single and pair production

$$
\begin{aligned} {\cal O}_1\!\propto\! G^a_{\mu\nu}G^{a,\mu\nu}\left(\frac{H}{v}+\frac{H^2}{2v^2}\right)\\ {\cal O}_2\!\propto\! G^a_{\mu\nu}G^{a,\mu\nu}\left(\frac{H}{v}-\frac{H^2}{2v^2}\right) \end{aligned}
$$

 \rightarrow combine this two channels to gain insights on the effective gluon-Higgs operators that the new quarks introduce

A. Pierce, J. Thaler, L.-T. Wang, JHEP 0705:070, 2007

OUTLINE

single and pair Higgs production

✦ approximate leading order results

vector singlet

✦ the model

- ✦ experimental bounds
- ✦ Higgs phenomenology

chiral mirror families

- ✦ the model
- ✦ experimental bounds
- ✦ Higgs phenomenology

gluon-Higgs effective operators

main mechanism: gluon fusion

g

 \bullet for heavy $(2m_q > m_H)$ quarks

VECTOR SINGLET

introduced for example in little Higgs and composite Higgs models

the fermion mass terms are

$$
-\mathcal{L}_{M}^{S} = \lambda_{1} \overline{\psi}_{L} H \mathcal{B}_{R}^{1} + \lambda_{2} \overline{\psi}_{L} \tilde{H} \mathcal{T}_{R}^{1} + \lambda_{3} \overline{\psi}_{L} \tilde{H} \mathcal{T}_{R}^{2} + \lambda_{4} \overline{\mathcal{T}}_{L}^{2} \mathcal{T}_{R}^{1} + \lambda_{5} \overline{\mathcal{T}}_{L}^{2} \mathcal{T}_{R}^{2} + \text{h.c.}
$$

$$
-\mathcal{L}_{M}^{SM}
$$

the charge $2/3$ mass eigenstates t, T are an admixture of \mathcal{T}^1 and \mathcal{T}^2 ,

$$
\begin{pmatrix} t_i \\ T_i \end{pmatrix} = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix} \begin{pmatrix} \mathcal{T}_i^1 \\ \mathcal{T}_i^2 \end{pmatrix} \tag{i = L, R}
$$

 \bullet 4 independent parameters $(m_b, m_t, M_T, \theta_L)$

CONSTRAINTS

Contribution to the Peskin-Takeuchi S, T, U parameters

CONSTRAINTS

Contribution to the Peskin-Takeuchi S, T, U parameters

$$
\Delta T_{app} = T_{SM} \hat{s}_L^2 (r s_L^2 + 2c_L^2 \log r - 1 - c_L^2) \qquad r = (M_T / m_t)^2
$$

\n
$$
\Delta S_{app} = -\frac{N_c}{18\pi} \hat{s}_L^2 [\log r (1 - 3c_L^2) + 5c_L^2] \qquad \Delta U_{app} = \frac{N_c}{18\pi} \hat{s}_L^2 (3s_L^2 \log r + 5c_L^2)
$$

DECOUPLING

decoupling occurs for $-\mathcal{L}_M^S = \lambda_1 \overline{\psi}_L H \mathcal{B}_R^1 + \lambda_2 \overline{\psi}_L \tilde{H} \mathcal{T}_R^1 + \lambda_3 \overline{\psi}_L \tilde{H} \mathcal{T}_R^2 + \lambda_4 \overline{\mathcal{T}}_L^2 \mathcal{T}_R^1 + \lambda_5 \overline{\mathcal{T}}_L^2 \mathcal{T}_R^2 + \text{h.c.}$

in this limit $M_T \sim \lambda_5 \ , \quad m_t \sim \lambda_2 v/\sqrt{2} \ , \quad \widehat{s_L \sim \lambda_3 v/M_T}$

 $r = \left(M_T/m_t\right)^2$

 \rightarrow if $M_T \rightarrow \infty$ and s_L is kept fixed, $\lambda_3 \rightarrow \infty$ and the singlet does not decouple!

 $\lambda_4, \lambda_5 \gg \frac{120}{\sqrt{2}}, \frac{130}{\sqrt{2}}$ and $\lambda_5 \gg \lambda_4$

 λ_2v

 $\overline{\sqrt{2}}$

,

 λ_3v

 $\overline{\sqrt{2}}$

 $\Delta T \sim T_{SM} s_L^2$ $(rs_L^2) - 2 + 2\log r$ $\to 0$, $\Delta S ~ \sim N_c$ 18π $s_L^2(5-2\log r)\to 0$. \Rightarrow in the decoupling limit

electroweak observables require a small mixing angle \Rightarrow at most some few % effect

electroweak observables require a small mixing angle \Rightarrow at most some few % effect

HIGGS DECAYS

the top partner also affects loop mediated decays

 \circ only small mixing allowed \Rightarrow below-% effects

MIRROR QUARKS

four additional heavy quarks, $\mathcal{T}^{1,2}$ (charge 2/3), $B^{1,2}$ (charge -1/3), in the SU(2)_L representations

as Standard Model families left right

 \rightarrow no mixing with the Standard Model t,b quarks for simplicity assume $M_{T_1} = M_{B_1} = M, M_{T_2} = M_{B_2} = M(1+\delta)$

are large deviations from the Standard Model double Higgs rate compatible with

✦ the measured single Higgs production cross section ✦ electroweak bounds

?

e.g., can we have a 15% or larger enhancement in the double Higgs amplitude (from the box contributions) while keeping single Higgs within 10% from the Standard Model?

$$
\boxed{\Delta_{box} \simeq -\Delta \big[1-\delta^2 \cos^2 \theta_+^b + \mathcal{O}(\delta^3)\big] + \delta^4 \cos^4 \theta_+^b \bigg[\frac{1}{2} - \delta(1-\sin \theta_+^b)\bigg]}
$$

DOUBLE HIGGS PRODUCTION

 \odot electroweak and single Higgs constraints do not allow for significant changes in double Higgs production

 \rightarrow the largest enhancement is below 20% (for $\Delta = -0.1$) ✦ small effects on the differential distributions

HIGGS DECAYS

the bounds from electroweak observables allow for large suppressions (up to -90%) or enhancements (up to +10%) in $H \to \gamma \gamma$!

but..

for a single Higgs rate within 10% the Standard Model value these deviations are reduced to $\pm 10\%$!

GLUON-HIGGS OPERATORS

effective Lagrangian for gluon-Higgs interactions (up to dim. 6 operators)

 $\mathcal{L} = c_1 \mathcal{O}_1 + c_2 \mathcal{O}_2$ $\sim G^a_{\mu\nu}G^{a,\mu\nu}\Phi^\dagger\Phi \sim G^a_{\mu\nu}G^{a,\mu\nu}\log\left(\frac{\Phi^\dagger\Phi}{v^2}\right)$ \bullet in the Standard Model $c_1^{SM} = 0$, $c_2^{SM} = 1$ ϕ $\mathcal{O}_1, \mathcal{O}_2$ contribute differently to Higgs single and pair production,

$$
\mathcal{O}_1 \propto G_{\mu\nu}^a G^{a,\mu\nu}\left(\frac{H}{v} + \frac{H^2}{2v^2}\right) \ , \ \ \mathcal{O}_2 \propto G_{\mu\nu}^a G^{a,\mu\nu}\left(\frac{H}{v} - \frac{H^2}{2v^2}\right)
$$

 $c_H \equiv c_1 + c_2$, $c_{HH} \equiv c_1 - c_2$

GLUON-HIGGS OPERATORS

 \bullet in the singlet model $c_1 = 0$, $c_2 = 1 \Rightarrow$ as the SM!

in the mirror fermion model

 $\beta_{t,b}=0$ $c_1^{t,b}$ $t,b = \frac{-2\beta_{t,b}}{1-\beta_{t,b}}$ $\frac{d\mu(t,b)}{(1-\beta_{t,b})^2}$ $\overset{\mu_{t,0}}{\longrightarrow}$ $c_1^{SM} = 0$

2

require single Higgs close to Standard Model $c_H \rightarrow c_H^{SM}(1+\Delta) = 1+\Delta \implies c_{HH} \rightarrow 2c_1 - (1+\Delta)$ $c_2^t = 1 +$ $\frac{2}{(1 - \beta_t)^2}$ $c_2^b =$ $(1 - \beta_b)^2$ \rightarrow need large $c_1 \Rightarrow$ either massless quarks or nonperturbative Higgs couplings!

2

 $\beta_q \sim \frac{\text{Dirac couplings}}{\text{Yukawa couplings}}$ mass entirely $\,0$

Dirac couplings

CONCLUSIONS

vector singlet

- \bullet its mixing with the top quark strongly constrained by S, T, $U \Rightarrow$ forced almost to decouple
- would yield reduced Higgs production rates
- electroweak bounds allow only for a few % effect in single Higgs production, and at most a 15% effect in double Higgs
- enhancement in $H\to\gamma\gamma$ below % level

same phenomenology as the Standard Model

CONCLUSIONS

mirror fermions

electroweak bounds allow for large enhancement/ suppression in Higgs rates

require single Higgs rate to be close to the measured one

 \blacktriangleright both double Higgs production and $H\to\gamma\gamma$ become undistinguishable from the Standard Model

CONCLUSIONS

connection to the effective gluon-Higgs operators

singlet model: only the Standard Model like operator \mathcal{O}_2 is induced \mathcal{O}_2

mirror fermion model

- **large deviations in Higgs pair production require** large *c*1
- ➡ only possible for massless quarks or nonperturbative Yukawa couplings

