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* Looking for physics beyond the Standard Model
— Direction detection: new classes of events

— Whole-event signatures: number of jets, total (transverse) energy,
missing (transverse) energy

— Tagging jets: b jets
— New tools: tag lone jets as arising from a known (or unknown)
highly-boosted heavy particle (¢ quark or New Heavy Boson)

* Looking for small discrepancies from the Standard
Model

— Detailed study of ¢ quarks and NHB
— Highly-boosted t and NHB are a window into high-§ processes



Tools for Boosted Jets

* Tools may be sensitive to underlying event and pile-up,
and thus may require prior cleanup

— Filtering (Butterworth, Davison, Rubin, & Salam [2008]; Krohn,
Thaler, & Wang [2009]; Ellis, Vermilion, & Walsh [2009])

— Templates (Almeida, Lee, Perez, Sterman, & Sung [2010])




A Jet’s Innards

First measure: jet mass, corresponding to two-parton
intra-jet dynamics
> Jets with two or more cores

Additional measures: correspond to three- or more-
parton intra-jet dynamics

> Jets with three or more cores

Study so-called planar flow
measured by CDF and Atlas

Differs from traditional “jet shape” (radial) distribution
which focuses on one-core (low-mass) jets



Planar Flow

* Define a shape tensor

 Define the planar flow Pf

4detZ
Pf =
(TrZ)?

 Vanishes for one- and two-parton jets, nonvanishing for
jets with three or more partons

0<Pf<1



QCD Backgrounds

QCD is omnipresent, can give rise to jets with similar
measures of substructure

To see genuine highly-boosted heavy objects, we need to
understand the backgrounds

Studies to date have used parton-shower codes

We will take the first step in studying these quantities
perturbatively



Using the Collinear Limit

Jets are narrow
Treat intra-jet radiation in the collinear approximation

» Expect factorization from the short-distance subprocess
Can’t be too close to the collinear limit

» Resummation would be required

Kinematic limits due to fixed number of partons atfect
behavior near upper limits

» Stay away from upper limits



Factorization

« Study pp — Jet + X
Jet defined by cone size R

Differentially in py, 77, and energy-flow observables O

* Expect a factorization of the form
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where J;is like a fragmentation function



Planar-Flow Jet Function

* Use collinear factorization of squared matrix element M
with n partons inside a jet

Mans1 ™~ Mo - | Splity ., |2
* Phase-space factorization

/‘dLIPSQ_Hq_Fl Mg_m_|_1 ~ /‘dLIPSQ%Q M2_>2 : /dLIPSl_m ‘ Splitl_yn ’2

 Specialize to n=3 and the central region to obtain an
expression for the planar-flow jet function
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characterizing fragmentation into a jet of fixed m and Pf



« Compute some integrals analytically, and the remainder
numerically: semi-analytic

* Compute as a function of Pf for fixed p; and m
* Separately for gluon and quark seeds
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* Where is the computation useful and reliable?



Probing the Forbidden Zone

« At small Pf, one can evaluate the integral analytically

A B
szp—ﬁlog(P—?)-l—---

* In this region, the fixed-order perturbative evaluation is
not valid: requires resummation

* At Pf=1, the dimension of the phase space drops by one,
and the function vanishes (kinematic constraint removed

by additional radiation)
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Need m above the resummation zone, and below the
kinematic limit:

asprR < m < prR

Satisfied for pT ~ 1 TeV and m ~ 180 GeV

Need Pf above the resummation zone, and below the
kinematic limit:

small <K Pf <1 -9

In practice
0.4 < Pf <0.95
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Strongly Ordered Approximation

* Can approximate the jet by a sequence of two 12

splittings
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 Corrections are substantial, and not uniform in planar flow

* Unmatched parton showers will not get this right



Coupling and Scales

Two powers of «: evaluate first at jet mass (first splitting)
Several choices for second:

— Jet mass
— Min s;; ~ invariant at second splitting (appropriate for quark pair)

— pr wrt to leading pair for gluons, invariant for quarks
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Jg/Jg, theory

Non-Universal Corrections
« Compute (2—]et(3 partons)+X)/(2—]Jet(1 parton)+X)

Parton-level

L.5F

* Full leading-order matrix element
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Hadronization Corrections

* Compare parton shower
calculation without
hadronization to one
with hadronization

* Inregion of interest
(0.4 < P£<0.95), 15%
correction
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Parton-Shower Results
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* All results using CTEQ6L PDFs



Comparisons

Sherpa, matched
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Summary and Outlook

Boosted jets will be a useful tool in new-physics searchs
and precision studies of top quarks and the NHB

First fixed-order perturbative study of backgrounds to
finding single-jet top quarks, using the planar flow

Semi-analytic evaluation of function characterizing jet

Other energy-flow observables

Next-to-leading order corrections



