
Software Lifecycle Management for WLCG beyond EMI 
(Main points) 
 
The EPEL FedoraProject provides a process to release packages and supports this 
process with a tool chain suited for distributed teams. 

Due to the packaging rules and licensing restriction not all material needed for 
WLCG middleware services and clients can be integrated with EPEL. Currently these 
packages are provided via the EMI and egi-UMD repositories. 

dCache Java packages cannot be integrated with EPEL. Sites should take the server 
code directly from http://dcache.org/ as it is already common practice on most 
sites. The clients need to be integrated with the UI and WN meta packages. This can 
be done via the UMD/WLCG repository. A concrete discussion on WLCG 
requirements for middleware repositories after emi has started with EGI. 
 
These repositories fulfil to a large extend the functionality required by this proposal. 
For simplicity I will refer throughout the text to this additional needed repository as 
the UMD/WLCG repository since it isn’t clear who will provide and manage these 
repositories in the future. 
 
Many product teams will remain, but with reduced effort. Will be missing the 
coordination between areas (PTs, users, sites). 
 
WLCG needs to be active in rollout testing and coordinating site upgrades. 
 
Overall approach to use open software products – EPEL in this area. Careful 
management needed EPEL-test to EPEL-prod especially as user/expt. Code overlaps 
m/w. Version management/announcement/validation not in EPEL. 
 
More reliance on local solutions being shared. Particularly in packaging and 
configuration. 
 
Straw-man process: 
 
Integration Point, Packaging and Repositories 
If technical feasible all software has to be provided in an EPEL compliant format. 
Those packages that can’t be included in EPEL have to be provided in the 
UMD/WLCG repository. Alternative packaging formats, such as used for 
CERNVMfs, re-locatable tarballs etc. have to be derived from EPEL-stable and 
UMD/WLCG repositories. The integration point is the combination of the EPEL 
repositories and the UMD/WLCG production repository. 
 
Product Teams 
Product teams make use of pilot services for pre-EPEL testing. 
 
Coordination 
Tracking (issues/requirements) via GGUS. Discussion via pre-GDB every 4 months. 
WLCG MB then endorses priority list and tracks progress. 
 



decommissioning of components, interfaces, APIs and the move to new OS 
versions tracked/coordinated via twiki tables. To minimize the workload on a central 
team it is essential that information is maintained and updated by those who do the 
work. 
 
Middleware configuration: 
Small sites profit from simple tools, such as YAIM or RPM post installation scripts. 
For large sites integration with their fabric management tool is a must. Given the 
multitude of tools, Quattor, puppet, cfengine, YAIM etc., it is not reasonable to expect 
that PTs acquire the necessary knowledge to support all. 
 
Sites that support specific configuration tools should be encouraged to share their 
Work – perhaps at pre-GDB. 
 
 
Validation in Production, Staged Rollout: 
This requires a significant effort from sites and experiments. Currently we are 
preparing an early form of this process for the validation of emi clients. Use of twiki 
to show progress and led by Ops coordination team. 
 
The staged rollout will start when packages are moved from the PTs repositories to 
the EPEL-test repository. A sufficiently long period for the transition to EPEL-stable 
should be set to avoid that packages are moved without proper validation. It is the 
PTs’ responsibility to inform the involved sites and experiments. 
 
For packages that are not much used outside our community, such as Globus, 
changes have to be tested explicitly via staged rollout. An agreed list of packages 
that WLCG needs to watch is needed. 
 
Rollback 
The concept of rolling back to the last recent working version isn’t a concept well 
supported by the EPEL repository. To rollback the previous version of the packages 
are moved into the UMD/WLCG 
repository. 
 
An approach easier for the site can be implemented via the epoch functionality of 
RPMs. However this concept of a hidden version number is confusing for 
developers, site admins and users. In addition it is in conflict with the EPEL style 
guide. 
 
Managing and tracking middleware versions in the infrastructure 
In the past (pre emi-2) the middleware providers produced versioned components. 
Clearly defined sets of RPMs, for the middleware layer, were defined by versioned 
meta packages and a set of repositories. The minimal acceptable versions were 
communicated via the WLCBaselineVersions twiki page. 
 
The situation is more complicated for clients due to the different distribution 
channels. 
 
During the build up of WLCG sites installed 



frequently inadequate versions of the clients. Experiments needed to provide client 
libs and tools via their software distribution mechanisms 
 
With the move of the integration point to EPEL the approach changed. This is not 
due to a policy decision by emi, but due to the fundamental concepts of EPEL. 
 
The Product Teams release service components through the EPEL process without 
versioned meta packages. EGI/WLCG creates versioned meta packages for 
components. 
Services publish the installed version automatically with the ResourceInfoProvider 
into the information system. To improve security this version number should be 
encoded with a public key 
 
Required Resources 
All efforts are estimates assuming a significant reduction in development activity 
after the end of emi and should be seen as a starting point for a discussion. 
Most effort is distributed and has to be seen as part of the work of the PTs. 
 
 
 
 
 
 


