

Status Update and Requirements

R2E Extended Project meeting TE-EPC-CC R2E Team

Presentation

- Specification
- Components
- Hardware
- Firmware VHDL
- Software
- Manufacturing
- Test Environment
- Conclusions

Specification

- The global specification seemed obvious, until
 - software is very well documented
 - hardware is missing a lot of specifications
 - FCGlite = reverse engineer the current FGC2
- Ongoing work to write specifications for FGClite (and FGC2)

- First had to select suitable components...
 - nanoFip FPGA is one of the basic building blocks
 - needed to identify a suitable Analogue to Digital Converter
 - and also a Digital to Analog Converter
- Other components copied from FGC2, proven track record
- This resulted in list of 35 semiconductors, split into 3 classes...

Component Classification

Class 0:

known to be resistant to radiation, or easily replaced if found to be weak. The basic design of the system is not influenced by these parts.

Class 1:

potentially susceptible to radiation, in less-critical parts of the system. Substitution of parts or mitigation of issues is possible with a re-design.

Class 2:

potentially susceptible to radiation, in more-critical parts of the system. The basic design is compromised if these parts do not perform well. Substitution of parts or mitigation of issues would be difficult

Semiconductor List

Class 0

Silicon Serial Number	DS2401Z
Silicon Serial Number/Thermometer	DS18B20
Small Signal Diode	BAV70
Small Signal Diode	BAV99
NPN Transistor	BC817-25
PNP Transistor	BC807-25
PNP Transistor	BCP53
PNP Transistor	FMMT591

Class 1

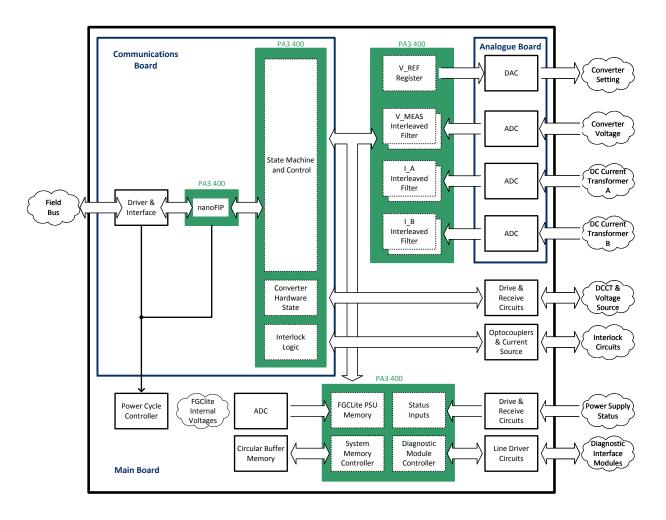
ADC with Multiplexor	MAX11046
Optocoupler	TLP124BV
Oscillator	IQXO-70-4M
Oscillator	SPXO018042-40M
Bus Transceiver	SN74LVC2T45
Voltage Regulator	MIC3702
Multiplexor	MAX337CWI
Voltage Regulator	LM340MP-5.0

Class 2

FPGA	A3P400-PQFP208
ADC	ADS1281

N MOSFET	IRFL110
N MOSFET	IRF1004
Zener Diode	BZX85C3V9
Zener Diode	BZX85C6V2
Transient Voltage Suppressor	TVS15V
Operational Amplifier	OPA2227U
LED	HSMF-A203-A00J1

Schmitt Trigger Buffer	74LVC14APW
Voltage Reference	LT1236ACS8-10
Voltage Regulator	TPS73033
Analogue Switch	DG412DY
Memory	F/M/SRAM
Operational Amplifier	THS4130
RS485 Driver	MAX3491
Precision Temperature Sensor	LM45CIM3


DAC	MAX5541CSA
Field-Bus Driver	FIELDRIVE

Component Type & Batch Testing

- Type-testing of components
 - EN / STI
 - □ TE/EPC
 - UCL
 - PSI
 - H4IRRAD
- Batch-testing of components
 - BE / CO = nanoFIP and FPGA
 - TE/EPC
 - UCL
 - PSI
 - PS East Area mid 2014 (critical path for project)

Hardware

Specification translated into block diagram:

Boards

- Analogue Board
 - □ 3 ADCs, 1 DAC, latch-up detectors, Voltage reference & multiplexors
 - no digital processing on-board
- Communications Board
 - nanoFip FPGA & Critical FPGA
 - reset buttons, diagnostics connector & LEDs
- Main Board (μ-lite version)
 - no analogue FPGA or auxiliary FPGA yet
 - no I/O hardware or Diagnostic Interface Module yet
 - just wiring, test connectors & voltage regulators
 - will allow VHDL and software development
 - validate analogue board and closed loop regulation principles

Boards

- Analogue Board
 3 ADCs, 1 DAC, latc
 no digital processing
- Communications Board
 nanoFip FPGA & Cri
 reset buttons, diagno
- Main Board (µ-lite versi
 - no analogue FPGA o
 - no I/O hardware or E
 - just wiring, test conn
 - will allow VHDL and

eference & multiplexors

validate analogue board and closed loop regulation principles

Firmware - VHDL

- "Microsemi Libero" challenging
 - □ bugs, bugs, bugs...
- Small working group of 4 people working with PA3 evaluation kits
 - IP Core Development Dallas 1-wire Bus
 - radiation test platforms (no Xilinx...)
 - ADC filter software processing converted to circuits in VHDL
 - memory implementation
- Get an idea what capacity of FPGA is needed
- No triple-mode-redundancy yet
- Code verification (as from Feb 2013)

Software

- New variant of FGCD needed in the gateway to provide
 - Gateway Class 6
 - FGClite Class 92
- Development of an FGC-µ-lite Gateway
 - generate V-ref with DAC
 - read-back measurements from 3 ADCs
 - store results and analyse

Manufacturing

- Component sourcing for about 100 FGClites
- Prudence by using 'old stock' components from FGC2... (availability)
- Negotiations with industry
 - TI for ADCs
 - ST about memory
- Prototypes
 - bare PCBs from 3 vendors check vendor skills
 - manual assembly @ CERN
- Invitation to Tender

Test Environment

- Evaluation started of National Instrument PXI based chassis
 - off-the-shelf hardware
 - tester control cards (TCCs)
 - LabWindows CVI
 - development PXI board for ADC demodulators

Conclusion

- promised at the beginning of this year a prototype in Autumn: FGC-**µ**-lite
 - Arni Dinius Project Leader
 - Benjamin Todd Hardware Engineer
 - Slawosz Uznanski Research Fellow Radiation Expert
 - Karol Motala Technician
 - Gilles Ramseier Analogue Engineer
 - David Millar until end 2012 Technical Student Dallas 1-wire
 - Andrea Vilar Villanueva Research Fellow VHDL Engineer
 - Stephen Page Software Engineer
 - Technical Student from start 2013 Testers (request approved)
 - Research Fellow 2013-2014 VHDL Verification (request approved)

The rapid development of FGC-µ-lite has only been possible due to an enormous team effort!