Current situation with LHC transverse & longitudinal profile and bunch charge measurements

F. Roncarolo with input from

E.Bravin, B.Dehning, J.Emery, J-J. Gras, M.Sapinski, R.Steinhagen

Beam Gas Imaging Kick-off meeting

30-Oct-2012

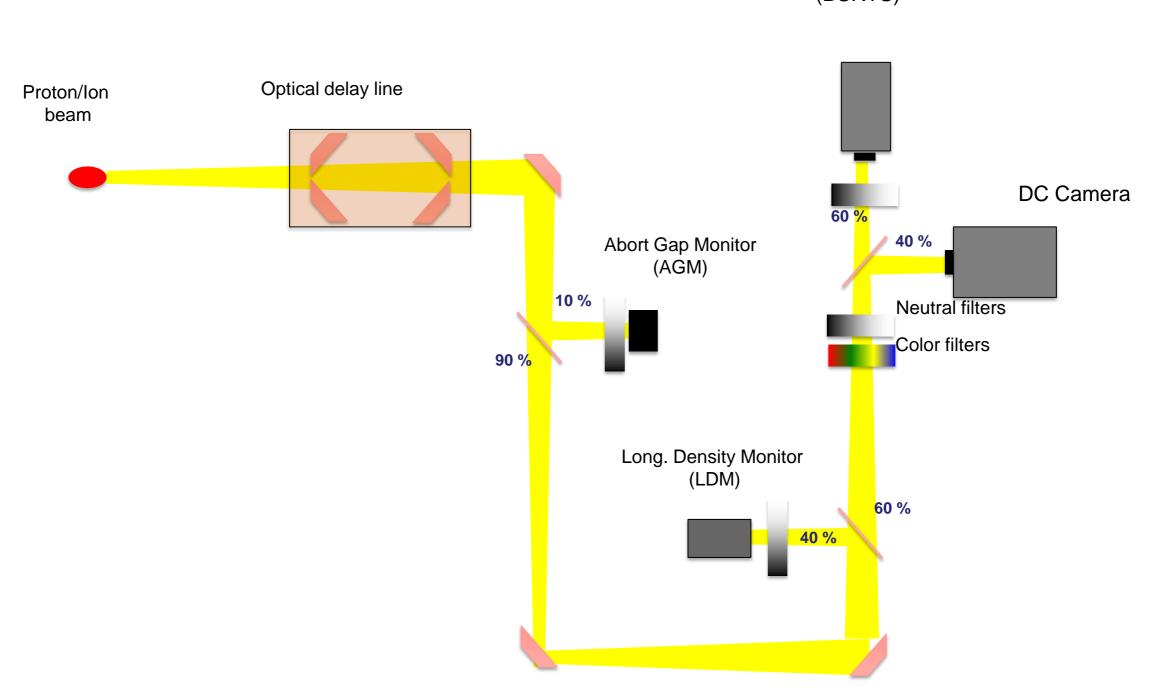
Contents

- Transverse distribution monitors
 - ✓ Wire Scanners
 - ✓ Synchrotron Light monitor
 - ✓ Beam-Gas monitor

- Longitudinal Distribution and bunch charge
 - ✓ Longitudinal Density Monitor
 - ✓ Abort Gap Monitor
 - ✓ Wall Current Monitor
 - ✓ Fast Beam Current Transformer

- Wire scanners are the LHC reference monitors for transverse profile measurements
 - ✓ 30um carbon wires flying at 1 m/s through the beam
 - ✓ At each proton beam revolution: downstream Scintillator+Photo-Multiplier measures secondary shower of particles to be correlated to wire position → profile
- Scan on demand
- Dynamic range controlled by PM gain and optical filters
- Can be used up to a maximum intensity that depends on beam energy
 - ✓ Above such maximum intensity: wire damage and/or quench downstream magnets (→ BLM thresholds to dump before reaching quench limit)
- Expected lifetime under normal operation (below intensity limits)
 - ~ 100.000 scans? (bellow, wire)

Wire Scanners – Operational Specifications


- Integration
 - ✓ 40 MHz sampling of PM integrator allows bunch per bunch measurements
 - $_{\circ}$ 50 ns ok
 - $_{\circ}~$ 25 ns cross-talk being studied
- Repetition Rate
 - ✓ Ideally ~0.2 Hz, at cost of system lifetime (wire, bellows)
- Dynamic range
 - ✓ From pilot bunch to ultimate intensity per bunch, but:
 - 。 Limits on total beam intensity

Energy	Limit	Reason
450 GeV	2.7e13p	Wire damage
4 TeV	3.6e12 p	BLM threshold
6.5 TeV	~1e12 p	BLM threshold

- Future: faster WS (20 m/s?)
 - $\checkmark\,$ can allow higher intensities at the cost of
 - multi-scans on a single bunch (go faster → few points/sigma) → need to overlap multi-scans with sampling position offsets
 - 。 single scan, combine NN bunches to have enough points/sigma

- Resolution
 - limited by minimum wire speed vs protons revolution frequency
 - $_{\circ}$ 1 m/s \rightarrow 89 um between two consecutive wire position acq. (\rightarrow profile points)
 - Can be improved overlapping multi-scans (or single scan combining NN bunches) with sampling position offset (as being tested now @ SPS)
 - ✓ Anyhow
 - Present wire position resolution limited by noise potentiometer noise (some 20um)
 - New WS: aiming for 2um resolution (independent of speed)
- Accuracy
 - ✓ With proper PM and filter settings, absolute accuracy proved to be 1% for the SPS linear WS
 - ✓ Accuracy of LHC WS under study
 - o theoretically equal to SPS linear WS
 - At the moment: evidence of dependence on working point (PM gain + filter settings)
 - Plan for different secondary shower detector (diamond)
 - $_{\circ}~$ Improve dynamic range
 - $_{\circ}$ Get rid of filters \rightarrow avoid dependence on working point

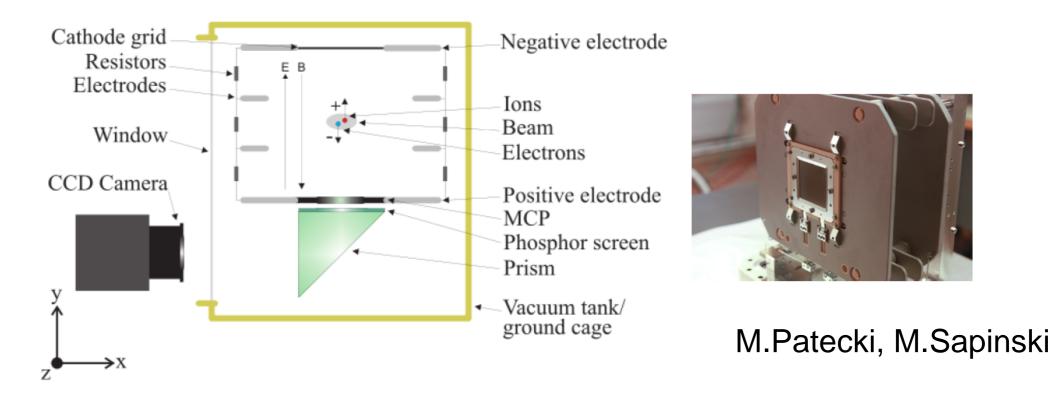
BSRT - Layout

Gated camera (BSRTS)

- Imaging of synchrotron radiation from SC undulator (for E<1.5TeV) and D3 dipole (for E>1.5TeV)
- Extraction mirror 30m downstream light source sends light to optical imaging system
- Continuous measurement
 - ✓ Far from being able to use images during the ramp (superimposition of undulator and D3 light)
- Dynamic range controlled by intensified camera gain + optical filters
- 2012 problems with high intensity beams, due to strong RF coupling → heating → extraction mirror distortion / mirror holding failure

- Gating
 - ✓ Intensified camera gating down to 25ns with a 12.5ns gating resolution
- Repetition rate
 - ✓ Max 200 Hz (limited by intensifier trigger rate)
 - ✓ Present image digitalization (BTV) 50 Hz
 - ✓ Present control + acquisition SW ~12 Hz
 - \rightarrow Can do bunch per bunch @ ~12Hz
 - → Can do single bunch single turn but not on consecutive turns

Dynamic Range


- Protons: From pilot at injection (single turn, every 220 turns) to average over all bunches at flat top
- ✓ Ions: From ~30 bunches at injection to average over all bunches at flat top

- Resolution
 - ✓ Present optics 0.1 mm/pix, next: 0.05 mm/pix
- Relative bunch per bunch accuracy <= 5%
 - ✓ 5% on single shot, dominated by reproducibility affected by noise (airflow, optical elements vibration, fit accuracy, etc ...)
 - ✓ 1% averaging on multi-shots
- Absolute accuracy:
 - ✓ Optics magnification validated to <= 5%</p>
 - 。 Calibration target
 - 。 Beam orbit local bumps
 - ✓ Ultimate accuracy dominated by aberration / diffraction
 - $_{\circ}~$ Need cross calibration w.r.t. WS
 - $_{\circ}$ \rightarrow calibration factors \rightarrow accuracy <=10% after calibration
 - Calibration factors not stable
 - Possible drifts due to mirror coating aging (heating)

- Rethink mechanical design + mirror type to cope with RF heating with high intensity beams
- Change optics from focusing mirrors to focusing lenses
 - ✓ Simpler optics, less elements
 - 。 Smaller effect of vibrations on reproducibility/noise
 - ✓ Decouple AGM and BSRT/LDM
 - ✓ Prototype optics installed on B1 during TS#3, will do the same on B2 during TS#4

BGI - Introduction

- Collect electrons form beam-gas ionization
 - ✓ Dipole B field to avoid drift from ionization location to MCP
 - ✓ MCP electron multiplication
 - ✓ Phosphor coupled to MCP output for electron→photon conversion
 - Imaging of phosphor output
- Designed for heavy ions
- Enough signal from protons by injecting local pressure bumps or high intensity
- Can monitor average relative beam size variation during the ramp

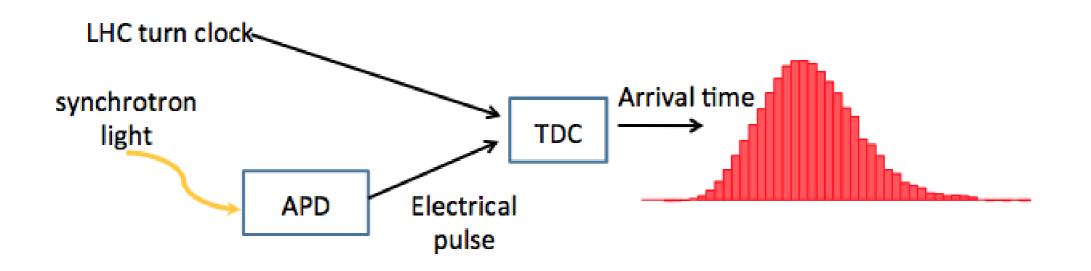
- Gating/Integration
 - ✓ Gated camera
 - ✓ Need to gate over multi-bunches to have enough signal (see dynamic range)

Repetition Rate

- ✓ 50Hz, limited by image digitalization (BTV)
- Dynamic range
 - ✓ With a "fresh" MCP:
 - ^o 10 proton bunches with gas injection 10-8mbar
 - [°] Single Pb ion bunch with gas injection 10-8mbar
 - A bit better at 4TeV due to denser beam
 - ✓ MCP aging rather quick

- Resolution
 - ✓ Present optics gives 0.115 mm/pixel
- Accuracy
 - ✓ Optics magnification validated to 1% by
 - 。 Beam orbit local bumps
 - 。 Reference wire-grid calibration
 - ✓ Needs cross calibration w.r.t WS and BSRT
 - ✓ For the moment not better than 20%, degrading with MCP aging
 - Many studies on going to understand ultimate resolution/accuracy
- LS1:
 - $_{\circ}~$ Replace MCPs
 - Second camera with better performances

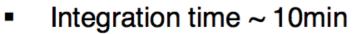
Transverse Profile Monitors Summary

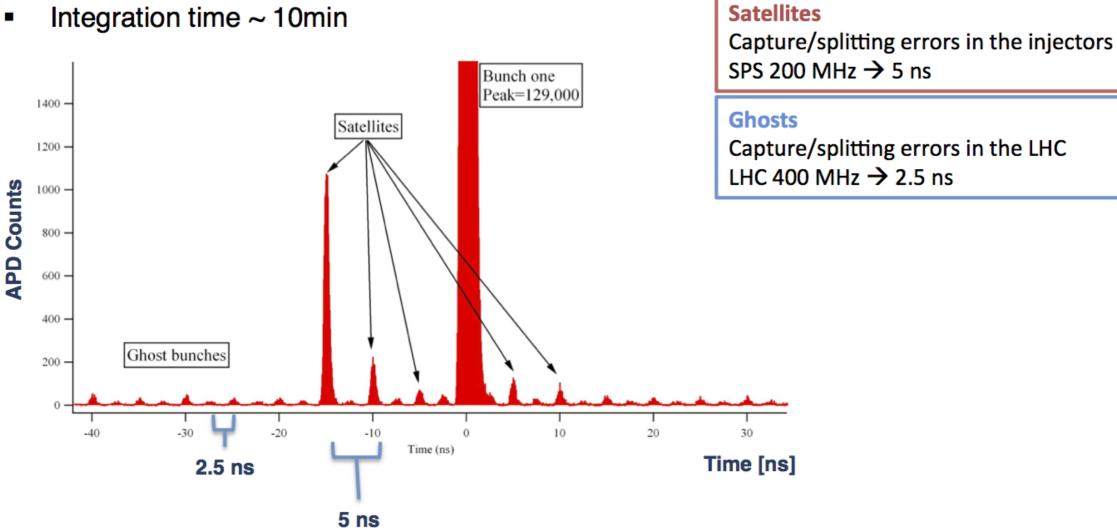

Monitor	Max Acq. rate	Minimum Gating/Samplin g	Dynamic Range		Spatial Resolution	Accuracy	Remarks
			Prot.	Pb lons			
WS	* ~ 0.2 Hz	25 ns	>5e9 <2.7e13 (450 GeV) <3.6e12 (4TeV) <1e12 (6.5TeV)	Under study	89 um @ 1 m/s	On paper ~1 % absolute and relative	Dependence on operational point (PM+filters)
BSRT	12 Hz (SW overheads) 50 Hz (BTV)	25 ns	>5e9	>30 Pb ions bunches @ inj	0.1mm/pix el	1 % relative ~ 10 % absolute	Need frequent calibration w.r.t. WS RF heating
BGI	50 Hz (BTV) (but needs 100ms to see signal)	20 ns (but not enough signal) Operational :100ms	>1e12 (with 1e- 8mbar)	1 Pb bunch (with 1e- 8mbar)	0.1mm pixel	~20% after calibration w.r.t. WS/BSRT.	MCP aging

Would imply continuous scanning \rightarrow low wire, bellow lifetime + blow-up due (interceptive device)

*

- Photo Multiplier detecting synchrotron light
- 10 Hz acquisition
- ~1e6 dynamic range (without considering optical filters)
- 100ns resolution
- Better than 5 % accuracy after cross-calibration vs FBCT
 - ✓ Need calibration curve vs energy to cope with sync. light sources


Longitudinal Density Monitor (LDM)



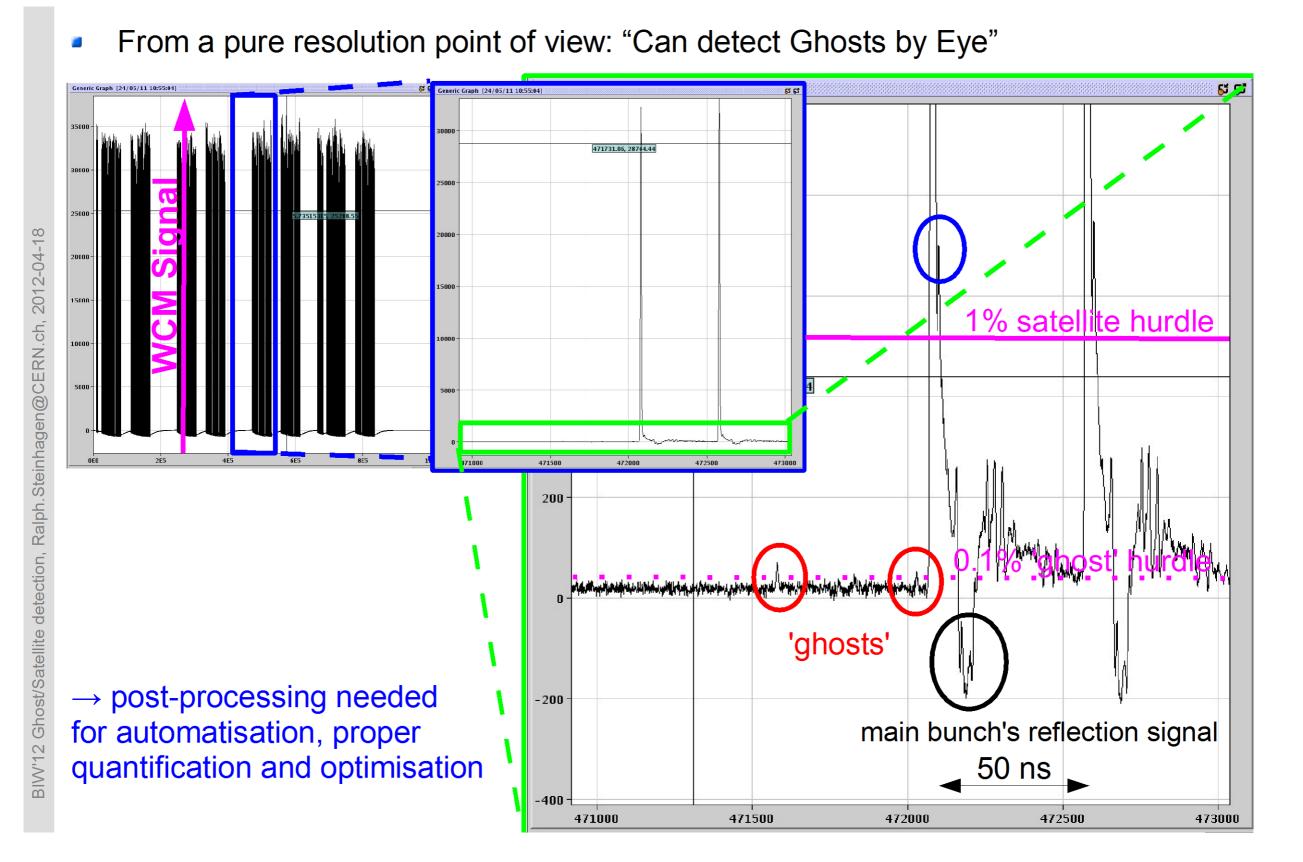
- Geiger mode Avalanche Photo-Diode, single photon counting
- 50ps resolution
- 10e5 dynamic range
- Need long integration time (10-15 minutes to achieve 10e5 dynamic range)
- Lots of data logged in 2012
- Ultimate accuracy/reliability affected by
 - ✓ BSRT system reliability
 - ✓ internal reflections
- Some ideas to improve system in LS1, resources manpower to be established

LDM meas. example

Lead lons beam

LDM is the only LHC system able to see all structures from RF, with enough dynamic range and time resolution for monitoring satellites and ghosts

FBCT

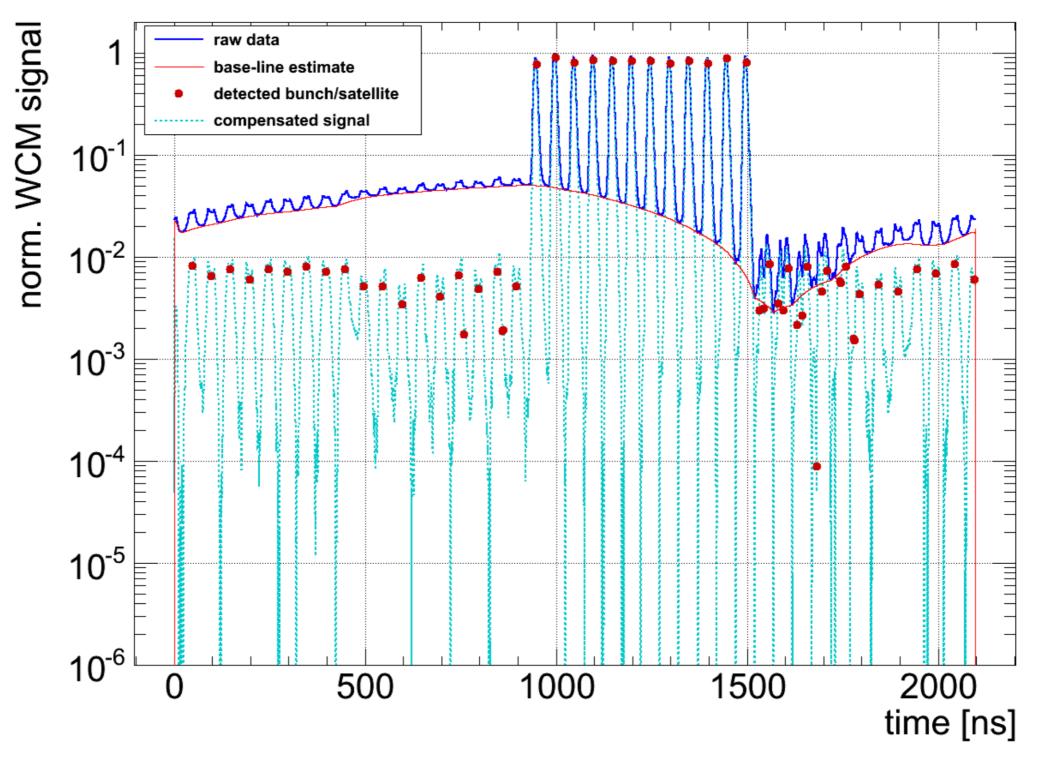

- Fast Beam current transformer able to meas. bunch per bunch
- Needs cross calibration with DC BCT
- Dependence on bunch length reduced after modified electronics
- Dependence on beam position depends on detector itself
- Future: development of new detector that should be much less sensible to beam position
- Relative bunch per bunch charge 1%
- Absolute accuracy ~1% after calibration w.r.t. DC BCT
- Integration limited to 25ns (maybe better after LS1)

Wall Current Monitor

8 ports RF pickup capable of estimating bunch charges and bunch shape

- Bunch intensity:
 - ✓ Absolute accuracy: cross-calibration w.r.t. DC BCT
 - Relative bunch per bunch accuracy, 0.1% limited by ADC linearity, stable over weeks after calibration w.r.t. DC BCT
- Bunch length
 - ✓ Different fit functions (Gaus,Cos2,parabolic) + fit errors for identifying bunch shape variations
 - ✓ Compensated for cable length/dispersion up to 3 GHz → << 1% in defining bunch length/shape variations
- For both intensity and longitudinal distribution meas.
 - ✓ Ultimate accuracy is limited by systematics (reflection of main bunch)
 - ✓ Need Integration @ 0.1Hz
 - ✓ B1 operational, B2 need to sort out SW/HW issues
- After LS1:
 - ✓ Aim for 10-6 satellites/main bunch.

WCM example (R.Steinhagen)


Summary

- Transverse Profile Monitors
 - ✓ WS are the most accurate system (dependence on working point under study), but
 - Can't be used at all beam intensities
 - ° Can't be used continuously
 - ✓ BGI and BSRT
 - provide a continuous and a higher repetition rate measurement, but ultimate relative and absolute accuracy is not established yet
 - WS, BGI, BSRT: Resolution for smaller beams at 6.5-7TeV (can go down to 100um or less with present beam optics) not necessarily achievable with present systems
- Bunch Charge and Longitudinal distribution monitors
 - ✓ FBCT relative bunch per bunch charge @ 1% after calibration w.r.t. DC BCT
 - LDM and WCM potentially very useful for longitudinal distribution, but still some work to achieve desired accuracy and reliability to consider them operaitonal

SPARE

WCM example (R.Steinhagen)

Satellites have been deliberately produced for better proof-of-principle:

18