A new LHC device for the LHC: implementation aspects/options/cost estimates

Detector
Readout chain
Gas target
organization

This is a brain dumi

the detector

New Device for LHC

Specifications:

provide measurement of emittance

- stat accuracy of <5% in 5 min for 10^{11} p
- syst uncertainty <5% (dominated by understanding of vtx resolution ?)</p>
- for $1.5 < \epsilon_n/um < 4$ and 0.45 < E/TeV < 7
- bunch by bunch (max bunches per measurement to be defined?)
- □ should not affect beam operation

By-products:

- measurement of ghost charge (crucial for lumi calib)
 see A. Alici et al. (BCNWG note4), CERN-ATS-Note-2012-029 PERF
- measurement of relative bunch charges (to be normed by DCCT)
 see G. Anders et al. (BCNWG note3), CERN-ATS-Note-2012-028 PERF

Possible add-on: (not in baseline discussed here)

timing detector with < ~100ps resolution, would provide longitudinal profile as well</p>

NB: it will measure beam **shapes** \rightarrow must be able to measure accurately absolute value of β function at the device position!

Starting point (educated guess)

Simplest solution with straight segmented detectors

We must find the place with the smallest ratio R_{pipe}/σ_{beam}

- □ Want small aperture, but large beams!! :-)
- Option not considered here: movable device (in vacuum)
 - complexity (and cost) increases substantially, but allows to come closer

What is the smallest possible radius ? (even if smaller beam size)

Drives whether we should use silicon or SciFi

Performance/cost optimization to be done

- □ Inclined detectors, stereo angle, ...
- □ Saw tooth beam pipe ?
- □ Put ring1 device such that no bkg to ring2 device (and vice versa)
- □ Can we live with 4 planes (xyx'y') using vertex-constrained tracking ?
- □ etc...

recycle from LHCb ?

Beam-gas Imaging for LHC – kickoff meeting 30-Oct-2012

CERN

LHCb TT in more details

- \Box 34 staves/plane x 4 planes = 136 staves
- □ Cooled to about 0 °C
- □ Issue: sensors are glued on the stave (7 by 7)

LHCb IT in more details

- \Box 14 osm/plane x 12 planes = 168 osm
- \Box 14 tsm/plane x 12 planes = 168 tsm
- Cooled to about 0 °C

Silicon modules in LHCb

- Both working well
- Apart perhaps from central part of TT, the detector modules will have little radiation damage, *but will be activated* (lightly radioactive material)

Scintillating Fiber modules in LHCb ?

- □ No SciFi detector in LHCb currently, but...
- □ Important R&D effort ongoing to consider SciFi for upgrade
 - would replace central part of Outer Tracker and the Inner Tracker
- □ Already some short modules available as a spare for the IT boxes

~11cm long fibers

- More modules being fabricated for Upgrade R&D, with several lengths (22cm, 80cm, 250cm)
- Groups: EPFL, Dortmund, Heidelberg, CERN, ...

Movable vs not movable

Movable detector device:

- □ can come closer to beam
 - improves resolution, compactifies the detector
- □ increases complexity of detector
 - mechanics, vacuum, protection, etc...
- □ Issues:
 - only movable in StableBeams ?
 - difficult to access detector (repair, maintenance)

My personal bias: «if it can be done with a fixed detector, don't make it movable...»

Possible add-on to be considered/studied

- Currently, in LHCb: 25ns integration time, 40MHz synchronous
 - OK for nominal RF buckets
 - But for ghost charge, had to check detection efficiency vs time

Fast timing detectors

- See e.g. AFP: based on cerenkov radiation, quartz rods with MCP-PMT can reach ~ 20ps
- Would allow measuring the longitudinal profile
 - satellites, bunch lengths, ...
 - Scintillators with ~ 0.3 ns are sufficient for satellite measurements, but we need < ~100 ps for proper bunch length measurement

readout chain

IT/TT FE electronics

Figure 5.29: Functional block for the processing of the data from one Beetle chip. This functional block is repeated four times on a TT digitizer card and three times on an IT digitizer card.

In principle, all these beautiful electronics are to be «scrapped» at LS2...

LHCb readout chain (IT and TT)

At the LHC, a simple view...

Data rate (to be refined at a later stage...)

- Assumption:
 - zero-suppressed IT-like detector (3072 channels per Tell1 board)
 - 20 tracks per primary vertex per plane (conservative)
 - Each hit is a double-strip cluster encoded in 12 bits (channel address) + 3 bits for interstrip distance
- Data size per vertex (one ring):

Detector cost estimate: Silicon «à la LHCb Upgrade»

Quick & dirty estimation

1 plane = 48 sensors

- ladder = 3 sensors bonded
- 3 chips per ladder
- 1 chip = 128 channels

2 rings 8 planes

Item	kCHF	Quantity	Remark	
Sensors	~1100	768	2x8x(3x4x4) sensors	
FE electronics	~400	768 / 256	Chips / Hybrids	
Readout chain	~200	4 / 384 / 384	Tell40 / GBT links / fibers	
HV/LV	~200			
Mech./cooling	~100			
TOTAL	~2000			

no spares taken into account => should add 10-15% cost

Detector cost estimate: SciFi «à la LHCb Upgrade»

NB1: cost almost doesn't change with increasing size of detector NB2: hard to get fiber diameter down...

no spares taken into account => should add 10-15% cost

Requirements:

 must give sufficient beam-gas rate from the nominal gas z-range: R(nom. range) > ~100Hz/10¹¹ p and sufficiently low bkg (from non-nominal z range) R(bkg) < R(nom. range)

- Also: minimize «useless» radiation damage to detector
- □ largest possible track multiplicity per vertex
 - Xe better than Ne better than He ...
- □ must be able to operate continously (when beam in machine)
- □ no effect on beam operation
 - lifetime due to injected gas >100h
 - contamination of nearby section to be kept low
 - check SEY for gettered or cryosorbed gas species

Which gas ?

Inelastic cross section $\sigma_{pA} \approx \sigma_{pp} \cdot A^{2/3}$ Charged pion multiplicities $M_{pA} \approx M_{pp} \cdot (a+b \cdot A^{1/3})$ $a \approx 0.65, b \approx 0.3$

MG, DR, Z. Phys C65, 215-223 (1995)

Larger A \rightarrow larger cross section and larger multiplicity per vertex

Getterable / non-getterable ? (or cryosorption ?)

 \Box getterable: e.g. CO₂, N₂, O₂ ...

- Very local pressure bump
- Requires regenerating (changing ?) the NEG sporadically
- □ non-getterable: e.g. Ne, Xe, ...
 - Longer pressure bump, requires differential pumping around the target
 - Some contamination of nearby cryo section surfaces ?

Gas target (sketch!!)

Reminder: contrary to VELO/LHCb, here gas injection must be continuous (with beam)... Consider impact on machine!

organization

Three (parallel) activities

- Off-the-trunk» device: (immediate)
 - install asap in LHC (LS1 or winter stop thereafter)
 - proof of principle, gain experience
 - only one LHC ring ?
- □ Full-blown solution for LHC: (mid-term)
 - enough detectors (redundancy, acceptance)
 - one device per per ring in LS2
 - buy new or recycle LHCb ?
- □ Further applications: (long-term)
 - SPS, PS, etc.

- □ Write down specifications of the new imaging device for LHC
 - detector
 - gas target
- \square Find best place in LHC (smallest R_{pipe}/\sigma_{beam})
- Organization: who works on what ?
 - The device is mostly a beam diagnostics instrument → project led by BE-BI, with strong support from TE-VSC, BE-ABP, LHC-OP, LHC-MP and PH

Detector

- Mechanics
- Sensors
- FE electronics
- RO board
- Ctrl electronics
- Ctrl s/w
- Acq f/w
- Reconstr s/w
- Monitoring s/w

Gas Target

- Vacuum sys
- Gas injection
- Cryo cooling
- Impedance
- Ctrl s/w
- Monitoring s/w
- ...

. . .

We need a (generic) name for such a device !!

Beam		Detector			
		Gas	Interaction		
B Imaging V A	BGI	alas, already in use			
	BSID	Beam Shape Imaging Detector (Device)			
	VIDET	Vertex Imaging DETector videt = latin for «it sees»	Vertex		
	AVID	Accelerator Vertex Imaging Detector			
V	VID	Vertex Imaging Detector (Device)			
Shape APID		Accelerator Particle? Imaging Detector	Locator		
VELO	VELO	VErtex LOcator			
Accelerator ???	BAGI	Beam Analyzer with Gas Interactions			
	???				
	???		Reconstructor		
	???				
	???		Analyzer		
Make your own suggestion!!					

backup

Option 3 for the detector arrangement (one XY plane)

Two modules types (two lengths)

Option1 for the detector arrangement (one XY plane)

LHCb electronics architecture

Front-end system Trigger system

Figure 2.2: General front-end electronics architecture and data flow in the DAQ interface.