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general:

Use in-medium charmonium behavior

to probe quark-gluon plasma

specific:

Use charmonium production in nuclear collisions

to probe QGP formation

basis:

Presence of produced medium

modifies cc̄ binding to charmonia
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cc̄ production: PDF’s fp(g) + perturbative QCD

J/ψ binding ? ...CEM, CSM, COM, ...

color evaporation “works”

σhh→J/ψ(s) = gcc̄→J/ψ σhh→cc̄(s),

partitioning of cc̄ cake among eaters is energy-independent
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Further consequence: energy-independent feed-down fractions

J/ψ measured in pp collisions is approximately

60 % direct J/ψ(1S), 30 % χc(1P) & 10 % ψ′ (2S)feed-down

narrow resonances → decay outside interaction region

medium sees traversal of higher resonances

• crucial question:

are these features
(hidden/open, relative quarkonium fractions)

changed in nuclear collisions?

NB:
the production dynamics in AA collisions is different from

that in pp collisions !
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modifications in nuclear collisions:

• initial state effects

pdf modification (shadowing, antishadowing)

energy loss of incident parton (gluon)

• final state effects

energy loss of primary cc̄

cold nuclear matter effect on (nascent) charmonium

secondary matter effect on (nascent) charmonium

previous analysis procedure:

• measure production in pp and pA

determine pdf modification (shadowing, antishadowing)

determine parton energy loss

determine cold nuclear matter effect
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• construct model for AA

scale pp by number of collisions

incorporate initial & cnm final state modifications

• compare to AA data: is there anomalous behavior?

i.e., something not accounted for by model → inconclusive

Theoretical Scenarios

• sequential suppression

color screening dissociates

charmonium states in QGP

first higher excited

states (2S), (1P),

then ground state (1S)
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• statistical enhancement

all primary charmonia dissociated

at high collision energy,

overabundance of charm quarks

equilibration, cc̄ excess survives

hadronisation by statistical

combination
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How to calibrate J/ψ survival probability?

both scenarios claim that presence of medium modifies the
relative fraction of cc̄ going into charmonia

neither says anything about how many cc̄ pairs are produced
in AA relative to scaled pp
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more explicitly:

if the total number of cc̄ pairs produced in AA collisions is
reduced by a factor two relative to scaled pp rates, but as
before, 90 % go into open charm, 10 % into charmonia (with
same distribution among states), then

• the medium formed in AA collisions leads neither
to suppression nor to enhancement of J/ψ production;

• the crucial question is what happens to the produced cc̄
pairs, not how many there are to begin with; the medium
can only affect those that are there.

• the quantity

RAA(J/ψ) =
NAA(J/ψ)

ncNpp(J/ψ)

is reduced by a factor two.
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Conclude:

the correct calibration is hidden to open charm, so that the
relevant observable is

SJ/ψ =
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In the observable

NAA(J/ψ)/NAA(cc̄),

if measured over all phase space, initial state effects cancel
out, and one can check if the result is different from

Npp(J/ψ)/Npp(cc̄) = gcc̄→J/ψ.

i.e., if the medium has had an effect on charmonium binding.
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NB: the often used observable RAA(J/ψ) alone
is at best inconclusive, at worst misleading

need to compare hidden to open charm,
so must compare RAA(J/ψ) to RAA(cc̄);
if they are equal: neither suppression nor enhancement

specifically, use double ratio

RAA(J/ψ)

RAA(cc̄)
=

NAA(J/ψ)

ncNpp(J/ψ)
/
NAA(cc̄)

ncNpp(cc̄)
= SJ/ψ

to get J/ψ survival probability.

apply to data – illustration only so far, kinematics...
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LHC Data
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Data from ALICE & CMS: J/ψ vs. open charm production at intermediate & high transverse momenta

(thanks to Zaida Conesa del Valle)

in AA, as many cc̄ pairs make J/ψ as in scaled pp,
but there just are fewer now to begin with

here neither J/ψ suppression nor enhancement; low PT?
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RHIC Data
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Data from PHENIX & STAR: J/ψ vs. open charm production at high & low transverse momenta
(thanks to Torsten Dahms)

at high pT , as at LHC;
at low pT , up to 80 % J/ψ suppression:

here ∃ no medium effect on cc̄ production,
only on charmonium binding.
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Complementary aspect: so-called “RHIC puzzle”
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“more J/ψ suppression” in

forward than in central

production, based on RAA

Could it be that there are just fewer cc̄ pairs produced
at forward than at mid rapidity?
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Check by looking at open charm production in pA collisions
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Rapidity dependence of open charm production in pA at 800 GeV, with parametriztionσpA = Aασpp.

(thanks to Mike Leitch)

The puzzle seems not so puzzling with correct calibration;
but need to check quantitatively
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Additional Probe

ratio of excited to ground state in AA: Υ(1S) : Υ(2S) : Υ(3S)
does the presence of a medium change this from pp?
initial state effects cancel here as well; example
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Seems evidence of sequential suppression...see CMS paper.
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Conclusions

Only measurements of hidden/open heavy flavor production,

measurements of excited/ground state quarkonium production

in pp, pA, AA

can provide model-independent answers

to model-independent questions.
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