Calibrating the In-Medium Behavior of Quarkonia

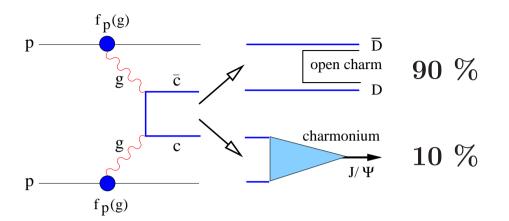
Helmut Satz

Universität Bielefeld, Germany

ECT* Trento April 4, 2013

general:

Use in-medium charmonium behavior to probe quark-gluon plasma


specific:

Use charmonium production in nuclear collisions to probe QGP formation

basis:

Presence of produced medium modifies $c\bar{c}$ binding to charmonia

charmonium production in pp collisions

 $c\bar{c}$ production: PDF's $f_p(g)$ + perturbative QCD J/ψ binding? ...CEM, CSM, COM, ... color evaporation "works"

$$\sigma_{hh o J/\psi}(s) = g_{car c o J/\psi}\,\sigma_{hh o car c}(s),$$

partitioning of $c\bar{c}$ cake among eaters is energy-independent

Further consequence: energy-independent feed-down fractions

 J/ψ measured in pp collisions is approximately 60 % direct $J/\psi(1{\rm S})$, 30 % $\chi_c(1{\rm P})$ & 10 % ψ' (2S)feed-down narrow resonances \to decay outside interaction region medium sees traversal of higher resonances

• crucial question:

are these features

(hidden/open, relative quarkonium fractions) changed in nuclear collisions?

NB:

the production dynamics in AA collisions is different from that in pp collisions!

modifications in nuclear collisions:

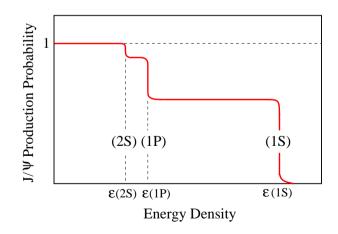
- initial state effects

 pdf modification (shadowing, antishadowing)

 energy loss of incident parton (gluon)
- final state effects energy loss of primary $c\bar{c}$ cold nuclear matter effect on (nascent) charmonium secondary matter effect on (nascent) charmonium

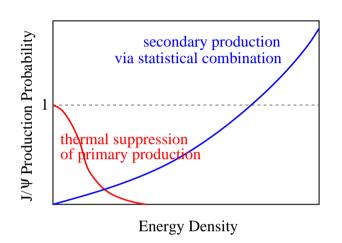
previous analysis procedure:

ullet measure production in pp and pA determine pdf modification (shadowing, antishadowing) determine parton energy loss determine cold nuclear matter effect


- ullet construct model for AA scale pp by number of collisions incorporate initial & cnm final state modifications
- compare to AA data: is there anomalous behavior? i.e., something not accounted for by model \rightarrow inconclusive

Theoretical Scenarios

sequential suppression
 color screening dissociates
 charmonium states in QGP


first higher excited states (2S), (1P),

then ground state (1S)

• statistical enhancement

all primary charmonia dissociated at high collision energy, overabundance of charm quarks equilibration, $c\bar{c}$ excess survives hadronisation by statistical combination

How to calibrate J/ψ survival probability?

both scenarios claim that presence of medium modifies the relative fraction of $c\bar{c}$ going into charmonia

neither says anything about how many $c\bar{c}$ pairs are produced in AA relative to scaled pp

more explicitly:

if the total number of $c\bar{c}$ pairs produced in AA collisions is reduced by a factor two relative to scaled pp rates, but as before, 90 % go into open charm, 10 % into charmonia (with same distribution among states), then

- the medium formed in AA collisions leads neither to suppression nor to enhancement of J/ψ production;
- the crucial question is what happens to the produced $c\bar{c}$ pairs, not how many there are to begin with; the medium can only affect those that are there.
- the quantity

$$R_{AA}(J/\psi) = rac{N_{AA}(J/\psi)}{n_c N_{pp}(J/\psi)}$$

is reduced by a factor two.

Conclude:

the correct calibration is hidden to open charm, so that the relevant observable is

$$S_{J/\psi} = \left(rac{N_{AA}(J/\psi)}{N_{AA}(car{c})}
ight)/\left(rac{N_{pp}(J/\psi)}{N_{pp}(car{c})}
ight) = rac{1}{g_{car{c} o J/\psi}}\left(rac{N_{AA}(J/\psi)}{N_{AA}(car{c})}
ight)$$

In the observable

$$N_{AA}(J/\psi)/N_{AA}(car{c}),$$

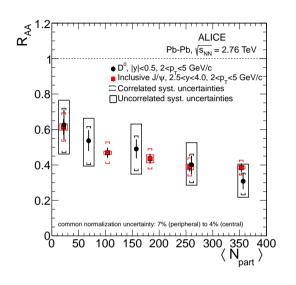
if measured over all phase space, initial state effects cancel out, and one can check if the result is different from

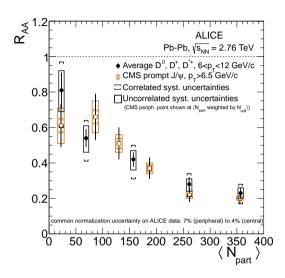
$$N_{pp}(J/\psi)/N_{pp}(car{c})=g_{car{c} o J/\psi}.$$

i.e., if the medium has had an effect on charmonium binding.

NB: the often used observable $R_{AA}(J/\psi)$ alone is at best inconclusive, at worst misleading

need to compare hidden to open charm, so must compare $R_{AA}(J/\psi)$ to $R_{AA}(c\bar{c})$; if they are equal: neither suppression nor enhancement

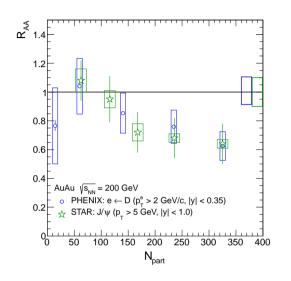

specifically, use double ratio

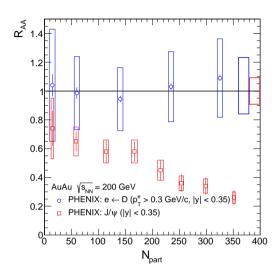

$$rac{R_{AA}(J/\psi)}{R_{AA}(car{c})} = rac{N_{AA}(J/\psi)}{n_c N_{pp}(J/\psi)} / rac{N_{AA}(car{c})}{n_c N_{pp}(car{c})} = S_{J/\psi}$$

to get J/ψ survival probability.

apply to data – illustration only so far, kinematics...

LHC Data

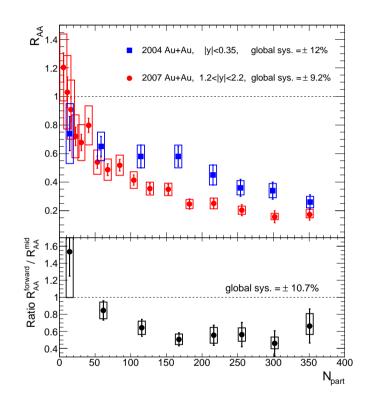



Data from ALICE & CMS: J/ψ vs. open charm production at intermediate & high transverse momenta (thanks to Zaida Conesa del Valle)

in AA, as many $c\bar{c}$ pairs make J/ψ as in scaled pp, but there just are fewer now to begin with

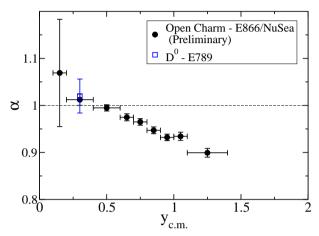
here neither J/ψ suppression nor enhancement; low P_T ?

RHIC Data



Data from PHENIX & STAR: J/ψ vs. open charm production at high & low transverse momenta (thanks to Torsten Dahms)

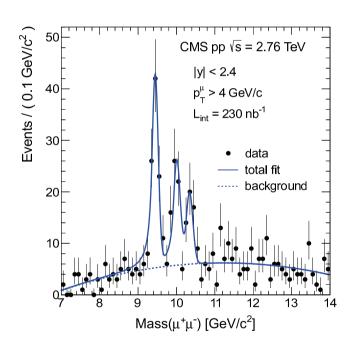
at high p_T , as at LHC; at low p_T , up to 80 % J/ψ suppression: here \exists no medium effect on $c\bar{c}$ production, only on charmonium binding.

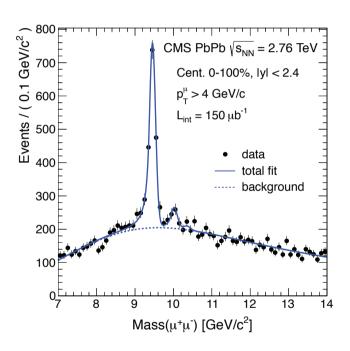

Complementary aspect: so-called "RHIC puzzle"

"more J/ψ suppression" in forward than in central production, based on R_{AA}

Could it be that there are just fewer $c\bar{c}$ pairs produced at forward than at mid rapidity?

Check by looking at open charm production in pA collisions




Rapidity dependence of open charm production in pA at 800 GeV, with parametriztion $\sigma_{pA} = A^{\alpha}\sigma_{pp}$. (thanks to Mike Leitch)

The puzzle seems not so puzzling with correct calibration; but need to check quantitatively

Additional Probe

ratio of excited to ground state in AA: $\Upsilon(1S):\Upsilon(2S):\Upsilon(3S)$ does the presence of a medium change this from pp? initial state effects cancel here as well; example

Seems evidence of sequential suppression...see CMS paper.

Conclusions

Only measurements of hidden/open heavy flavor production, measurements of excited/ground state quarkonium production

in pp, pA, AA

can provide model-independent answers

to model-independent questions.