"My quark is heavier than your quark"

Gert Aarts

FASTSUM collaboration

ECT* Trento, April 2013 - p. 1

Outline

introduction: why are we here? what is our purpose?

bottomonium on the lattice

- bottomonium spectral functions in the QGP
 - S waves: Υ at rest, moving
 - P waves: χ_{b1} melting

conclusion

QCD phase diagram

since this is the first talk, there is a moral obligation to show the QCD phase diagram

QCD phase diagram

since this is the first talk, there is a moral obligation to show the QCD phase diagram

Quarkonia and the QGP

quarkonia as a thermometer for the quark-gluon plasma

Matsui & Satz 86

- stightly bound states of charm quarks $(J/\psi,...)$ or bottom quarks $(\Upsilon,...)$ survive to higher temperatures
- broader states melt at lower temperatures

melting pattern informs about temperature of the QGP

- relevant for heavy-ion collisions
- quantitative predictions required

Quarkonia and the QGP

- CMS results at the LHC: Υ spectrum
- compare PbPb collisions (left) and pp collisions (right)

- $\Upsilon(1S)$ survives $\Upsilon(2S,3S)$ suppressed
- sequential melting

Quarkonia and the QGP

how to find the response of quarkonia to the QGP?

- potential models
- Iattice QCD

at T > 0:

- plethora of potential models: (seemingly) conflicting results
- interpretation of lattice correlators hindered by thermal (periodic) boundary conditions

re-addressed recently using first-principle approach:

effective field theories (EFTs) and separation of scales

Quarkonia and EFTs

 $M \gg T > \dots$

hierarchy of scales:

- heavy quark mass M
- temperature T
- \checkmark inverse size g^2M
- Debye mass gT

. . .

• binding energy g^4M

ightarrow weak coupling

corresponding EFTs:

- NRQCD
- NRQCD + HTL
- pNRQCD
- pNRQCD + HTL

Laine, Philipsen, Romatschke & Tassler 07 Laine 07-08 Burnier, Laine & Vepsäläinen 08-09 Beraudo, Blaizot & Ratti 08 Escobedo & Soto 08 Brambilla, Ghiglieri, Vairo & Petreczky 08 Brambilla, Escobedo, Ghiglieri, Soto & Vairo 10 Escobedo, Soto & Mannarelli 11

Quarkonia and EFTs

 $M \gg T > \dots$

some perturbative results (assuming $\alpha \ll 1$):

potential obtains an imaginary part

Laine, Philipsen, Romatschke & Tassler

thermal corrections to energy and width

Brambilla, Escobedo, Ghiglieri, Soto & Vairo

use complex potential models

Laine et al, Strickland et al, Miao, Mocsy & Petreczky, ...

solve EFT nonperturbatively: lattice QCD

bottomonium: $M_b \sim 4.5 \text{ GeV}$ $T \sim 150 - 400 \text{ MeV}$

use of NRQCD very well motivated

Bottomonium in the QGP

FASTSUM COLLABORATION

PRL (2011), JHEP (2011, 2013), in preparation

Lattice QCD

- QGP with two light flavours (Wilson-like)
- many time slices: highly anisotropic lattices ($a_s/a_{\tau} = 6$)
- In attice spacing: $a_{\tau}^{-1} \simeq 7.35$ GeV, $a_s \simeq 0.162$ fm
- lattice size: $12^3 \times N_{\tau}$

$N_{ au}$	80	32	28	24	20	18	16
T/T_c	0.42	1.05	1.20	1.40	1.68	1.86	2.09
N_{cfg}	250	1000	1000	500	1000	1000	1000

bottom quark: NRQCD

mean-field improved action with tree-level coefficients, including up to $\mathcal{O}(v^4)$ terms $$\tt Davies\ et\ al\ 94$$

■ see other FASTSUM talks for $N_f = 2 + 1$ results

ECT* Trento, April 2013 - p. 9

Spectrum

- exponential decay $G(\tau) \sim \exp\left(-m_{\text{eff}}\tau\right)$
- effective mass plot $m_{\text{eff}} = -\log \left[G(\tau) / G(\tau a_{\tau}) \right]$

 Υ (S wave) and χ_{b1} (P wave)

Spectrum

zero temperature: ground and first excited states

state	$a_{\tau}\Delta E$	Mass (MeV)	Exp. (MeV)
$1^1 S_0(\eta_b)$	0.118(1)	9438(8)	9390.9(2.8)
$2^1S_0(\eta_b(2S))$	0.197(2)	10019(15)	-
$1^3S_1(\Upsilon)$	0.121(1)	9460*	9460.30(26)
$2^3S_1(\Upsilon')$	0.198(2)	10026(15)	10023.26(31)
$1^1 P_1(h_b)$	0.178(2)	9879(15)	9898.3(1.1)(1.1)
$1^3 P_0(\chi_{b0})$	0.175(4)	9857(29)	9859.44(42)(31)
$1^3 P_1(\chi_{b1})$	0.176(3)	9864(22)	9892.78(26)(31)
$1^3 P_2(\chi_{b2})$	0.182(3)	9908(22)	9912.21(26)(31)

* $\Upsilon(1S)$ used to set the scale

 $T/T_{c} = 2.09$

little T dependence

substantial *T* dependence no exponential decay melting

from euclidean correlators to spectral functions

$$G(\tau, \mathbf{p}) = \int d\omega \, K(\tau, \omega) \rho(\omega, \mathbf{p}) \qquad K(\tau, \omega) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

. . .

use Maximal Entropy Method (MEM)

first discussed quite some time ago ...

Asakawa & Hatsuda 1999, 2001

Karsch, Petreczky et al 2002

... but full of pitfalls and obstacles

- in equilibrium: thermal boundary conditions
- euclidean correlators periodic
- spectral relation

$$G(\tau) = \int d\omega \, K(\tau, \omega) \rho(\omega)$$
$$K(\tau, \omega) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

problematic small ω region: constant contribution transport, susceptibilities

G.A. & Martinez Resco 02, Petreczky & Teaney 05

relativistic formulation:

melting of quarkonia obscured by constant contribution

Umeda 07, Petreczky et al 07-09

NRQCD:

- constant contribution absent
- no thermal boundary condition
- simple spectral relation $G(\tau) = \int d\omega \, e^{-\omega \tau} \rho(\omega)$

why?

- factor out heavy quark mass scale: $\omega = 2M + \omega'$
- $M \gg T$: thermal effects exponentially suppressed

no thermal boundary conditions
simple spectral relation G(τ) = ∫ dω e^{-ωτ}ρ(ω)
example:

correlators for free quarks with kinetic energy $E_{\mathbf{p}} = \frac{\mathbf{p}^2}{2M}$

$$G_{S}(\tau) \sim \int d^{3}p \exp\left(-2E_{\mathbf{p}}\tau\right) \qquad \rho_{S}(\omega) \sim \int d^{3}p \,\delta(\omega - 2E_{\mathbf{p}})$$
$$G_{P}(\tau) \sim \int d^{3}p \,\mathbf{p}^{2} \exp\left(-2E_{\mathbf{p}}\tau\right) \qquad \rho_{P}(\omega) \sim \int d^{3}p \,\mathbf{p}^{2} \delta(\omega - 2E_{\mathbf{p}})$$

Burnier, Laine & Vepsäläinen 08

temperature dependence only enters via medium !

Υ at finite temperature

nonperturbative spectral function: zero temperature

dotted: ground and first excited states from exp. fits

Υ at finite temperature

construct spectral function: temperature dependence

ground state survives – excited states suppressed compare with CMS results

Υ at finite temperature

extract mass shift and width of the ground state

Ines are analytical weak-coupling predictions

$$\Delta E \sim \alpha_s T^2 / M$$
 $\Gamma / T \sim \alpha_s^3$ $\alpha_s \sim 0.4$

Brambilla, Escobedo, Ghiglieri, Soto & Vairo 10

• non-relativistic speeds: $v/c \leq 0.2$

- ratio $G(\tau, \mathbf{p})/G(\tau, \mathbf{0})$: clear momentum dependence in correlators, as expected
- reflected in spectral functions, agreement with exp. fits

• non-relativistic speeds: $v/c \leq 0.2$

- ratio $[G(\tau, \mathbf{p}; T)/G(\tau, \mathbf{0}; T)]/[G(\tau, \mathbf{p}; T_0)/G(\tau, \mathbf{0}; T_0)]$: very little temperature dependence in the momentum dependence
- survival of moving groundstate

- extract dispersion relation $E(p)/M = 1 + \frac{1}{2}v^2$ and thermal width in the QGP
- thermal deviations? need to control uncertainties

• non-relativistic speeds: $v/c \leq 0.2$

MEM input

MEM output

- insensitivity to default model
- sensitivity to maximal τ used

P waves at finite temperature

- \blacksquare groundstate below T_c , agreement with exp. fit
- \bullet melting immediately above T_c
- sensitive to τ_{\max} : reflects thermal boundary conditions? stable when $\tau_{\max} \le N_{\tau} - 3$

P waves at finite temperature

- melting above T_c : a featureless blob ?
- shape similar to free lattice spectral function ?
- in progress

Summary

bottomonium: NRQCD on QGP background

S wave ground states survive, at rest and moving excited states appear suppressed

• P wave states melt immediately above T_c

use of NRQCD greatly improves reliability of MEM

• in progress: extension to $N_f = 2 + 1$ on a finer lattice

EMMI workshop:

SIGN 2014

3rd international workshop on the sign problem in QCD and related theories

4 days in February 2014

GSI, Darmstadt, Germany

organisers: Owe Philipsen and GA