Quarkonium Spectral and Transport properties from Lattice QCD

Olaf Kaczmarek

University of Bielefeld

Heavy Quarks and Quarkonia in Thermal QCD ECT* Trento 02.-05.04.2013

Motivation – PHENIX/STAR results for the low-mass dilepton rates

pp-data well understood by hadronic cocktail

large enhancement in Au+Au between 150-750 MeV

indications for thermal effects!?

Need to understand the contribution from QGP \rightarrow spectral functions from lattice QCD

Dileptonrate directly related to vector spectral function:

$$\frac{\mathrm{d}W}{\mathrm{d}\omega\mathrm{d}^3p} = \frac{5\alpha^2}{54\pi^3} \frac{1}{\omega^2(e^{\omega/T}-1)} \ \rho_{\mathbf{V}}(\omega, \vec{\mathbf{p}}, \mathbf{T})$$

Vector correlation functions at high temperature

$$G(\tau, \vec{p}, T) = \int_{0}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \rho(\omega, \vec{p}, T) K(\tau, \omega, T) \qquad K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Lattice observables:

$$G_{\mu\nu}(au, \vec{x}) = \langle J_{\mu}(au, \vec{x}) J_{\nu}^{\dagger}(0, \vec{0}) \rangle$$

$$\begin{array}{c|c} & \mathbf{q} \\ \Gamma_{\mathbf{H}} & \mathbf{F}_{\mathbf{H}} \\ (0,0) & \mathbf{\bar{q}} \end{array} \begin{array}{c} & \Gamma_{\mathbf{H}} \\ (\tau,\mathbf{X}) \end{array} \end{array}$$

$$J_{\mu}(\tau, \vec{x}) = 2\kappa Z_{V} \bar{\psi}(\tau, \vec{x}) \Gamma_{\mu} \psi(\tau, \vec{x}) \qquad \text{local, non-conserved current,} \\ \text{needs to be renormalized} \\ G_{\mu\nu}(\tau, \vec{p}) = \sum_{\vec{x}} G_{\mu\nu}(\tau, \vec{x}) e^{i\vec{p}\vec{x}} \qquad \text{only } \vec{p} = 0 \text{ used here}$$

How to extract spectral properties from correlation functions?

Free theory (massless case):

free non-interacting vector spectral function (infinite temperature):

$$\rho_{00}^{free}(\omega) = 2\pi T^2 \omega \delta(\omega)$$

$$\rho_{ii}^{free}(\omega) = 2\pi T^2 \omega \delta(\omega) + \frac{3}{2\pi} \omega^2 \tanh(\omega/4T)$$

 δ -functions exactly cancel in $\rho_V(\omega)$ =- $\rho_{oo}(\omega)$ + $\rho_{ii}(\omega)$

With interactions (but without bound states):

while
$$\rho_{00}$$
 is protected, the δ -function in ρ_{ii} gets smeared:
Ansatz:
 $\rho_{00}(\omega) = 2\pi \chi_q \omega \delta(\omega)$
 $\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1 + \kappa) \omega^2 \tanh(\omega/4T)$
Ansatz with 3-4 parameters: $(\chi_q), c_{BW}, \Gamma, \kappa$
["Thermal dilepton rate and electrical conductivity...",

H.T.-Ding, OK et al., PRD83 (2011) 034504]

N

Electrical Conductivity \iff slope of spectral function at ω =0 (Kubo formula)

$$\frac{\sigma}{T} = \frac{C_{em}}{6} \lim_{\omega \to 0} \frac{\rho_{ii}(\omega, \vec{p} = 0, T)}{\omega T}$$

$$C_{em} = e^2 \sum_{f=1}^{n_f} Q_f^2 = \frac{5/9 \ e^2}{6/9 \ e^2} \ \text{for} \ n_f = 2$$

 $n_f = 3$

Using our Ansatz for $\rho_{ii}(\omega)$:

$$\frac{\sigma}{T} = \frac{2}{3} \frac{\chi_q}{T^2} \frac{T}{\Gamma} c_{BW} C_{em}$$

previous studies using staggered fermions (need to distinguish ρ_{even} and ρ_{odd}):

S.Gupta, PLB 597 (2004) 57: N_{τ} =8-14, $N_{\sigma} \le 44$ G.Aarts et al., PRL 99 (2007) 022002: N_{τ} =16,24, N_{σ} =64

Vector correlation function on large & fine lattices

Quenched SU(3) gauge configurations at $T/T_c=1.5$ (separated by 500 updates)

Lattice size $N_{\sigma}^{3} N_{\tau}$ with $N_{\sigma} = 32 - 128$ $N_{\tau} = 16, 24, 32, 48$ Temperature: $T = \frac{1}{aN_{\tau}}$

Non-perturbatively O(a) clover improved Wilson fermions

Non-perturbative renormalization constants

Volume dependence

Quark masses close to the chiral limit, $\kappa \simeq \kappa_c \Leftrightarrow m_{\overline{MS}}/T[\mu=2GeV] \approx 0.1$

N_{τ}	N_{σ}	β	c_{SW}	κ	Z_V	$1/a[{ m GeV}]$	$a[\mathrm{fm}]$	#conf
16	32	6.872	1.4124	0.13495	0.829	6.43	0.031	60
16	48	6.872	1.4124	0.13495	0.829	6.43	0.031	62
16	64	6.872	1.4124	0.13495	0.829	6.43	0.031	77
16	128	6.872	1.4124	0.13495	0.829	6.43	0.031	129
24	128	7.192	1.3673	0.13440	0.842	9.65	0.020	156
32	128	7.457	1.3389	0.13390	0.851	12.86	0.015	255
48	128	7.793	1.3104	0.13340	0.861	19.30	0.010	431
cut-off dependence & continuum extrapolation close to continuum								

Light Quarks - Vector Correlation Function – continuum extrapolation

Use our Ansatz for the spectral function

["Thermal dilepton rate and electrical conductivity...", H.T.-Ding, OK et al., PRD83 (2011) 034504]

$$\rho_{00}(\omega) = 2\pi \chi_q \omega \delta(\omega)$$

$$\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1+\kappa) \omega^2 \tanh(\omega/4T)$$

and fit to the continuum extrapolated values

 $\frac{\mathbf{G_V}(\tau,\mathbf{T})}{\bar{\mathbf{G}}_{\mathbf{00}}\mathbf{G_V^{free}}(\tau,\mathbf{T})} \ \& \ \mathbf{G_V^{(2)}}$

Light Quarks - Spectral function and electrical conductivity

Use our Ansatz for the spectral function

["Thermal dilepton rate and electrical conductivity...", H.T.-Ding, OK et al., PRD83 (2011) 034504]

Analysis of the

$$\rho_{00}(\omega) = 2\pi \chi_q \omega \delta(\omega)$$

$$\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1+\kappa) \omega^2 \tanh(\omega/4T) \times \Theta(\omega_0, \Delta_\omega)$$

Light Quarks - Dilepton rates and electrical conductivity

["Thermal dilepton rate and electrical conductivity...", H.T.-Ding, OK et al., PRD83 (2011) 034504]

Dileptonrate directly related to vector spectral function:

Preliminary results at 1.1 T_c

[M.Müller et al., arXiv:1301.7436]

PRACE-Project:

Thermal Dilepton Rates and Electrical Conductivity in the QGP (JUGENE Bluegene/P in Jülich)

1.09 T_c Lattices (all $N_\sigma/N_\tau = 3$)								
$1/T = a \cdot N_r$								
	N ₇	No	β	к	1/a[GeV]	≈ a[fm]	#conf	
	32	96	7.192	0.13440	9.65	0.020	223	
	48	144	7.544	0.13383	14.21	0.015	226	
	64	192	7.793	0.13345	19.30	0.010	165	

study of T-dependence of dilepton rates and electrical conductivity

fixed aspect ratio to allow continuum limit at finite momentum:

$$\frac{\vec{p}}{T} = 2\pi \vec{k} \frac{N_{\tau}}{N_{\sigma}}$$

Light Quarks - Spectral function and electrical conductivity

Use our Ansatz for the spectral function

 $2\pi \lambda \left(\left(\lambda \right) \right) = 2\pi \lambda \left(\left(\lambda \right) \right)$

["Thermal dilepton rate and electrical conductivity...", H.T.-Ding, OK et al., PRD83 (2011) 034504, arXiv:1301.7436]

$$\rho_{00}(\omega) = 2\pi \chi_q \omega_0(\omega)$$

$$\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1+\kappa) \omega^2 \tanh(\omega/4T) \times \Theta(\omega_0, \Delta_\omega)$$

$$\frac{\sigma}{T} = \frac{C_{em}}{6} \lim_{\omega \to 0} \frac{\rho_{ii}(\omega, \vec{p} = 0, T)}{\omega T}$$

Light Quarks - Dilepton rates and electrical conductivity

["Thermal dilepton rate and electrical conductivity...", H.T.-Ding, OK et al., PRD83 (2011) 034504, arXiv:1301.7436]

Dileptonrate directly related to vector spectral function:

Non-zero momentum

indications for non-trivial behaviour of spectral functions at small frequencies:

Motivation - Quarkonium in Heavy Ion Collisions

Charmonium+Bottmonium is produced (mainly) in the early stage of the collision

Depending on the Dissociation Temperature

- remain as bound states in the whole evolution
- release their constituents in the plasma

Transport Coefficients are important ingredients into hydro models for the evolution of the system.

Usually determined by matching to experiment (see right plot)

here: Heavy Quark Diffusion Constant D

later: Heavy Quark Momentum Diffusion

Need to be determined from QCD using first principle lattice calculations!

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi \chi_{00} \ \omega \delta(\omega)$

- + zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) \simeq 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}$, $\eta = 0$

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) = 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}, \quad \eta = 0$

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) = 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}, \quad \eta = 0$

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) = 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}, \qquad \eta = \frac{T}{MD}$

+ zero-mode contribution at ω =0: $\rho(\omega) = 2\pi\chi_{00} \ \omega\delta(\omega)$ + transport peak at small ω : $\rho(\omega \ll T) = 2\chi_{00} \frac{T}{M} \frac{\omega\eta}{\omega^2 + \eta^2}, \quad \eta =$

Spatial Correlation Function and Screening Masses

Correlation functions along the spatial direction

$$G(z,T) = \int dx dy \int_0^{1/T} d\tau \langle J(x,y,z,\tau) J(0,0,0,0) \rangle$$

are related to the meson spectral function at non-zero spatial momentum

$$G(\mathbf{z},T) = \int_{-\infty}^{\infty} dp_z e^{ip_z z} \int_{0}^{\infty} d\omega \frac{\sigma(\omega, \mathbf{p}_z, T)}{\omega}$$

exponential decay defines screening mass $\mathbf{M}_{\mathsf{scr}}$:

$$egin{array}{cl} \longrightarrow & \mathbf{e}^{-\mathbf{M_{scr}z}} \ z \gg 1/T & \mathbf{e}^{-\mathbf{M_{scr}z}} \end{array}$$

bound state contribution

$$\sigma(\omega, p_z, T) \sim \delta(\omega^2 - p_z^2 - M^2)$$

 $M_{scr} = M \longrightarrow$

indications for medium

high-T limit (non-interacting free limit)

$$\sigma(\omega, p_z, T) \sim \sigma_{free}(\omega, p_z, T)$$

$$M_{scr} = 2\sqrt{(\pi T)^2 + m_c^2}$$

Spatial Correlation Function and Screening Masses

 $M_{scr} = M$

screening masses for bound states insensitive to boundary conditions due to bosonic nature of the basic degrees of freedom

"... the change in the behavior of the charmonium screening masses around $T=1.5T_c$ is likely due to the melting of the meson states."

["Signatures of charmonium modification in spatial correlation functions", F.Karsch, E.Laermann, S.Mukherjee, P.Petreczky PRD85(2012)114501]

[H.T.Ding, OK et al., PRD86(2012)014509]

Quenched SU(3) gauge configurations (separated by 500 updates) at 4 temperatures

Lattice size
$$N_{\sigma}^{3} N_{\tau}$$
 with $N_{\sigma} = 128$
 $N_{\tau} = 16, 24, 32, 48, 96$

Non-perturbatively O(a) clover improved Wilson fermions

Non-perturbative renormalization constants

Quark masses close to charm quark mass

		Mass in GeV		
β	J/ψ	η_c	Xcl	χ
6.872	3.1127(6)	3.048(2)	3.624(36)	3.540(25)
7.457	3.147(1)(25)	3.082(2)(21)	3.574(8)	3.486(4)
7.793	3.472(2)(114)	3.341(2)(104)	4.02(2)(23)	4.52(2)(37)

cut-of	ff dep	endenc	e v	olume o	depend	lence		
β	a[fm]	a^{-1} [GeV]	$L_{\sigma}[\text{fm}]$	CSW	ĸ	$N_{\sigma}^3 \times N_{\tau}$	T/T_c	Nconf
6.872	0.031	6.432	3.93	1.412488	0.13035	$128^3 \times 32$	0.74	126
						$128^{3} \times 16$	1.49	198
7.457	0.015	12.864	1.96	1.338927	0.13179	$128^{3} \times 64$	0.74	179
						$128^{3} \times 32$	1.49	250
7.793	0.010	18.974	1.33	1.310381	0.13200	$128^{3} \times 96$	0.73	234
	close	to conti	nuum			$128^{3} \times 48$	1.46	461
	0000 ()	$m a \ll 1$				$128^{3} \times 32$	2.20	105
	(m _c a «)			$128^{3} \times 24$	2.93	81
						empera	ture d	epende

Charmonium Correlators vs Reconstructed Correlators

$$G(\tau, T) = \int \sigma(\omega, T) K(\omega, \tau, T)$$
$$G_{rec}(\tau, T) = \int \sigma_0(\omega, 0.75T_c) K(\omega, \tau, T)$$
$$G_{\mu\mu}(\tau, T) = G_{ii}(\tau, T) + G_{00}(\tau, T)$$

main T-effect due to zero-mode contribution

τ [fm]

0.25

- well described by small ω -part of $\sigma_T(\omega, \mathsf{T})$
- explains the rise in the vector channel
- no zero-mode contribution in PS-channel (similar to discussions by Umeda, Petreczky)

Charmonium Correlators vs Reconstructed Correlators

negative difference for all T

- indications for thermal modifications in the bound state frequency region
- remember: no transport contribution in this channel

- positive diff. due to small- ω contr.
- positive slope indicates modifications in the bound state frequency region
- remember: small- ω contribution determines transport coefficient

First estimate from fit to vector channel: $2\pi T D \approx 0.6 - 3.4$

Charmonium Spectral function

[H.T.Ding, OK et al., PRD86(2012)014509] from sophisticated Maximum Entropy Method analysis:

statistical error band from Jackknife analysis

no clear signal for bound states at and above 1.46 T_c

study of the interesting region closer to T_c on the way!

Charmonium Spectral function

[H.T.Ding, OK et al., PRD86(2012)014509] from sophisticated Maximum Entropy Method analysis:

statistical error band from Jackknife analysis

no clear signal for bound states at and above 1.46 T_c

study of the interesting region closer to T_c on the way!

Charmonium Spectral function – Transport Peak

[H.T.Ding, OK et al., PRD86(2012)014509]

Perturbative estimate ($\alpha_s \sim 0.2$, g ~ 1.6):

LO: $2\pi TD \simeq 71.2$ NLO: $2\pi TD \simeq 8.4$ [Moore&Teaney, PRD71(2005)064904, Caron-Huot&Moore, PRL100(2008)052301] Strong coupling limit:

 $2\pi TD = 1$

[Kovtun, Son & Starinets, JHEP 0310(2004)064]

[A.Francis,OK,M.Laine,J.Langelage, arXiv:1109.3941]

Heavy Quark Effective Theory (HQET) in the large quark mass limit

leads to a (pure gluonic) "color-electric correlator"

[J.Casalderrey-Solana, D.Teaney, PRD74(2006)085012, S.Caron-Huot, M.Laine, G.D. Moore, JHEP04(2009)053]

Heavy quark (momentum) diffusion:

$$\kappa = \lim_{\omega \to 0} \frac{2T\rho_{\rm E}(\omega)}{\omega}$$
 , $D = \frac{2T^2}{\kappa}$

Heavy Quark Momentum Diffusion Constant

[A.Francis,OK,M.Laine,J.Langelage, arXiv:1109.3941]

due to the gluonic nature of the operator, signal is extremely noisy

 \rightarrow multilevel combined with link-integration techniques used to improve the signal

 \rightarrow tree-level improvement (right figure) to reduce discretization effects

[similar studies by H.B.Meyer, New J.Phys.13 (2011) 035008 and D.Banerjee, S.Datta, R.Gavai, P.Majumdar, PRD85(2012)014510]

Heavy Quark Momentum Diffusion Constant

[A.Francis,OK,M.Laine,J.Langelage, arXiv:1109.3941]

Model spectral function: transport contribution + NLO [Y.Burnier et al. JHEP 1008 (2010) 094)]

 $\rho_{\text{model}}(\omega) \equiv \max\left\{\rho_{\text{NLO}}(\omega), \frac{\omega\kappa}{2T}\right\}$ $G_{\text{model}}(\tau) \equiv \int_{0}^{\infty} \frac{\mathrm{d}\omega}{\pi} \rho_{\text{model}}(\omega) \frac{\cosh\left(\frac{1}{2} - \tau T\right)\frac{\omega}{T}}{\sinh\frac{\omega}{2T}}$

Still large uncertainties but very promising
→ thermodynamic+continuum limit needed
→ more constraints on the spectral function
→ other operators and observables from EFT?

Charmonium:

[F.Karsch, E.Laermann, S.Mukherjee, P.Petreczky, PRD85(2012)114501]:

"... the change in the behavior of the charmonium screening masses around $T=1.5T_c$ is likely due to the melting of the meson states."

[H.T.Ding, OK et al., PRD86(2012)014509]:

Detailed knowledge of the vector correlation function at various T in quenched QCD

continuum extrapolation of correlation function still needed!

Results so far depend on MEM analysis \rightarrow Ansätze more difficult due to m_q dependence

----> Heavy quark diffusion constant: $2\pi DT pprox 2$

-----> No signs for bound states at and above 1.46 T_c