

University of Catania INFN-LNS

Heavy flavor Suppression: Langevin vs Boltzmann

S. K. Das, F. Scardina V. Greco, S. Plumari

OUTLINE OF OUR TALK.....

- **□** Introduction
- ☐ Langevin Equation and the Thermalization Issue
- ☐ Boltzmann Equation and the Thermalization Issue
- ☐ Nuclear Suppression: Langevin vs Boltzmann
- ☐ Summary and outlook

Introduction

At very high temperature and density hadrons melt to a new phase of matter called Quark Gluon Plasma (QGP).

$$au$$
 HQ > au LQ, au HQ ~ (M/T) au LQ

Heavy flavor at RHIC

PHENIX: *PRL98(2007)172301*

At RHIC energy heavy flavor suppression is similar to light flavor

Heavy Flavors at LHC

arXiv:1203.2160
ALICE Collaboration

Again at RHIC energy heavy flavor suppression is similar to light flavor

Is the HQ momentum transfer really small!

Boltzmann Kinetic equation

$$\left(\frac{\partial}{\partial t} + \frac{P}{E} \frac{\partial}{\partial x} + \mathbf{F} \cdot \frac{\partial}{\partial p}\right) f(x, p, t) = \left(\frac{\partial f}{\partial t}\right)_{col}$$

$$R(p,t) = \left(\frac{\partial f}{\partial t}\right)_{col} = \int d^3k \left[\omega(p+k,k)f(p+k) - \omega(p,k)f(p)\right]$$

$$\omega(p,k) = g \int \frac{d^3q}{(2\pi)^3} f'(q) v_{q,p} \sigma_{p,q \to p-k,q+k}$$
 is rate of collisions which change the momentum of the charmed quark from p to p-k

$$\omega(p+k,k)f(p+k) \approx \omega(p,k)f(p)+k.\frac{\partial}{\partial p}(\omega f)+\frac{1}{2}k_ik_j\frac{\partial^2}{\partial p_i\partial p_j}(\omega f)$$

$$\frac{\partial \mathbf{f}}{\partial \mathbf{t}} = \frac{\partial}{\partial \mathbf{p_i}} \left[\mathbf{A_i}(\mathbf{p}) \mathbf{f} + \frac{\partial}{\partial \mathbf{p_j}} \left[\mathbf{B_{ij}}(\mathbf{p}) \mathbf{f} \right] \right]$$

B. Svetitsky PRD 37(1987)2484

where we have defined the kernels

'
$$A_i = \int d^3k \omega(p, k) k_i \rightarrow Drag Coefficient$$

$$B_{ij} = \int d^3k \omega(p, k) k_i k_j \rightarrow Diffusion Coefficient$$

Boltzmann Equation

Fokker Planck

It is interesting to study both the equation in a identical environment to ensure the validity of this assumption.

Langevin Equation

$$dx_{j} = \frac{p_{j}}{E}dt$$

$$dp_{j} = -\Gamma p_{j}dt + \sqrt{dt}C_{jk}(t, p + \xi dp)\rho_{k}$$

where

 Γ is the deterministic friction (drag) force

 C_{ii} is stochastic force in terms of independent

Gaussian-normal distributed random variable

$$\rho = (\rho_x, \rho_y, \rho_z)$$
, $P(\rho) = \left(\frac{1}{2\pi}\right)^3 \exp(-\frac{\rho^2}{2})$

With
$$\langle \rho_i(t) \rho_k(t') \rangle = \delta(t - t') \delta_{jk}$$

$$\xi=0$$
 the pre-point Ito

 $=\frac{1}{2}$ the mid-point Stratonovic-Fisk

interpretation of the momentum argument of the covariance matrix.

H. v. Hees and R. Rapp arXiv:0903.1096

Langevin process defined like this is equivalent to the Fokker-Planck equation:

$$\frac{\partial f}{\partial t} + \frac{p_j}{E} \frac{\partial f}{\partial x_j} = \frac{\partial}{\partial p_j} \left[\left(p_j \Gamma - \xi C_{lk} \frac{\partial C_{jk}}{\partial p_l} \right) f \right] + \frac{1}{2} \frac{\partial^2}{\partial p_j \partial p_k} (C_{jl} C_{kl} f)$$

the covariance matrix is related to the diffusion matrix by

$$C_{jk} = \sqrt{2B_0} P_{jk}^{\perp} + \sqrt{2B_1} P_{jk}^{\parallel}$$

and
$$A_i=p_j\Gamma-\xi C_{lk}\,rac{\partial C_{ij}}{\partial p_i}$$

$$B_0=B_1=D \qquad C_{jk}=\sqrt{2D(E)}\delta_{jk}$$

With

Relativistic dissipation-fluctuation relation

$$A(E)ET - D(E) + T(1 - \xi)D'(E) = 0$$

For Collision Process the A_i and B_{ij} can be calculated as following:

$$A_{i} = \frac{1}{2E_{p}} \int \frac{d^{3}q}{(2\pi)^{3} 2E_{q}} \int \frac{d^{3}q'}{(2\pi)^{3} 2E_{q'}} \int \frac{d^{3}p'}{(2\pi)^{3} 2E_{p'}} \frac{1}{\gamma_{c}} \sum |M|^{2} (2\pi)^{4} \delta^{4}(p+q-p'-q') f(q) [(p-p')_{i}] = \langle \langle (p-p')_{i} \rangle \rangle$$

$$B_{ij} = \frac{1}{2} \langle \langle (p-p')_{i}(p'-p)_{j} \rangle \rangle$$

Elastic processes

✓ We have introduce a mass into the internal gluon propagator in the t and u-channel-exchange diagrams, to shield the infrared divergence.

B. Svetitsky PRD 37(1987)2484

Thermalization in Langevin approach in a static medium

- 1) Diffusion D=Constant
 Drag A= D/ET from FDT
- 2) Diffusion D=D(p)
 Drag A(p) =D(p)/ET
- 3) Diffusion D(p)
 Drag A(p): from FDT + derivative term

$$A(E)ET - D(E) + T(1 - \xi)D'(E) = 0$$

4) Diffusion D(p) and Drag A(p) both from pQCD

We are solving Langevin Equation in a box.

Case:1

1) D=Constant A= D/ET from FDT

Due to the collision charm approaches to thermal equilibrium with the bulk

Bulk composed only by gluon in Thermal equilibrium at T= 400 MeV.

Case:2

Diffusion coefficient: D(p)
Drag coefficient: A(p)=D(p)/TE

In this case we are away from thermalization around 50-60 %

Case:3

Diffusion coefficient: D(p) Drag coefficient: From FDT with the derivative term

$$A(E)ET - D(E) + T(1 - \xi)D'(E) = 0$$

Implementation of the derivative term improve the results. But still we are around 10 % away from the thermal equilibrium.

Case: 4

Diffusion coefficient: D(p) pQCD Drag coefficient: A(p) pQCD

In this case we are away from thermalization around 40-50 %.

More realistic value of drag and diffusion

More we away from the thermalization !!!

Transport theory

$$p^{\mu}\partial_{\mu}f(x,p) = C_{22}$$

We consider two body collisions

$$\mathcal{C}_{22} = \frac{1}{2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} \frac{1}{\nu} \int \frac{d^3p_1'}{(2\pi)^3 2E_1'} \frac{d^3p_2'}{(2\pi)^3 2E_2'} f_1' f_2' |\mathcal{M}_{1'2'\to12}|^2 (2\pi)^4 \delta^{(4)}(p_1' + p_2' - p_1 - p_2)$$

$$-\frac{1}{2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} \frac{1}{\nu} \int \frac{d^3p_1'}{(2\pi)^3 2E_1'} \frac{d^3p_2'}{(2\pi)^3 2E_2'} f_1 f_2 |\mathcal{M}_{12\to1'2'}|^2 (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_1' - p_2')$$

$$\Delta t \to 0$$

$$\Delta^3 x \to 0$$
Exact
solution

Collision integral is solved with a local stochastic sampling

$$P_{22} = \frac{\Delta N_{\text{coll}}^{2 \to 2}}{\Delta N_1 \Delta N_2} = v_{\text{rel}} \sigma_{22} \frac{\Delta t}{\Delta^3 x}$$

Cross Section gc -> gc

$$\sum |\mathfrak{M}|^2 = \pi^2 \alpha^2 (\mathcal{Q}^2) \left[\frac{32(s-M^2)(M^2-u)}{t^2} + \frac{64(s-M^2)(M^2-u) + 2M^2(s+M^2)}{9(s-M^2)^2} \right] \qquad \frac{1}{t} \rightarrow \frac{1}{t-m_D} \qquad m_D = \sqrt{4\pi\alpha_s} T$$

$$+\frac{64}{9}\frac{(s-M^2)(M^2-u)+2M^2(M^2+u)}{(M^2-u)^2}+\frac{16}{9}\frac{M^2(4M^2-t)}{(s-M^2)(M^2-u)}$$

$$+16\frac{(s-M^2)(M^2-u)+M^2(s-u)}{t(s-M^2)}-16\frac{(s-M^2)(M^2-u)-M^2(s-u)}{t(M^2-u)}\right].$$

The infrared singularity is regularized introducing a Debye-

$$\frac{1}{t} \to \frac{1}{t - m_D} \qquad m_D = \sqrt{4\pi\alpha_s} T$$

L. Combridge, Nucl. Phys. B151, 429 (1979)]

[B. Svetitsky, Phys. Rev. D 37, 2484 (1988)]

Cross Section gc -> gc

The infrared singularity is regularized introducing a Debyescreaning-mass μ_D

$$\frac{1}{t} \to \frac{1}{t - m_D} \qquad m_D = \sqrt{4\pi\alpha_s} T$$

$$\sum |\mathfrak{M}|^2 = \pi^2 \alpha^2 (Q^2) \left[\frac{32(s - M^2)(M^2 - u)}{t^2} + \frac{64(s - M^2)(M^2 - u) + 2M^2(s + M^2)}{(s - M^2)^2} \right] \qquad \frac{1}{t} \to \frac{1}{t - m_D}$$

$$+ \frac{64(s - M^2)(M^2 - u) + 2M^2(M^2 + u)}{(M^2 - u)^2} + \frac{16}{9} \frac{M^2(4M^2 - t)}{(s - M^2)(M^2 - u)}$$

$$+16\frac{(s-M^2)(M^2-u)+M^2(s-u)}{t(s-M^2)}-16\frac{(s-M^2)(M^2-u)-M^2(s-u)}{t(M^2-u)}$$

$$\hat{\sigma} = \frac{1}{16\pi(s-M^2)^2} \int_{-(s-M^2)^2/s}^{0} dt \sum |\mathcal{M}|^2$$

. L. Combridge, Nucl. Phys. B151, 429 (1979)] [B. Svetitsky, Phys. Rev. D 37, 2484 (1988)]

C and C initially are distributed: uniformily in r-space, while in p-cnace

C and C initially are distributed: uniformily in r-space, while in p-cnace

C and C initially are distributed: uniformily in r-space, while in p-cnace

C and C initially are distributed: uniformily in r-space, while in p-chace

C and C initially are distributed: uniformily in r-space, while in p-chase

Due to collisions charm approaches to thermal equilibrium with the bulk

C and C initially are distributed: uniformily in r-space, while in p-chace

Due to collisions charm approaches to thermal equilibrium with the bulk

C and C initially are distributed: uniformily in r-space, while in p-chace

Due to collisions charm approaches to thermal equilibrium with the bulk

C and C initially are distributed: uniformily in r-space, while in p-space

Due to collisions charm approaches to thermal equilibrium with the bulk

C and C initially are distributed: uniformily in r-space, while in p-chase

Due to collisions charm approaches thermal equilibrium with the bulk

Momentum transfer

Distribution of the squared momenta transfer k² for fixed momentum P of the charm

The momenta transfer of gg->gg and gc-> gc are not so different

Boltzmann vs Langevin

Both drag and diffusion from pQCD

Langeven approaches thermalisation in a faster rate.

Ratio between Langevin and Boltzmann At fixed time

A factor 2 difference

Nuclear Suppression: Langevin vs Boltzmann

Suppression is more in Langevin approach than Boltzmann

Summary & Outlook

- Both Langevin and Boltzmann equation has been solved in a box for heavy quark propagating in a thermal bath composed of gluon at T=400 MeV.
- In Langevin approach it is difficult to achieve thermalization criteria for realistic value of drag and diffusion coefficients.
- **W** Boltzmann equation follow exact thermalization criteria.
- It is found that charm quark momentum transfer is not very differ from light quark momentum transfer.
- In Langevin case suppression is stronger than the Boltzmann case by a factor around 2 with increasing pT.
- It seems Langevin approach may not be really appropriate to heavy flavor dynamics.

