Proposal for HIE-ISOLDE based on the Letter of Intent

Multiple Coulomb Excitation of ${ }^{110,108,106,(104) S n}$

J. Cederkall, D. Di Julio, C. Fahlander, P. Golubev, D. Rudolph, M. Hjorth-Jensen, A. Ekstrom, S. Siem, A. Goergen, P. A. Butler, D. T. Joss, A. Blazhev, J. Jolie, P. Reiter, N. Warr, D. G.

Jenkins, R. Wadsworth, S. Freeman, J. Iwanicki, P. Napiorkowski, M. Huyse, P. van Duppen, T. Davinson, Th. Kroll, M. Scheck, J. Leske, N. Pietralla, T. Grahn, D. Muecher, J. Kurcewicz, E. Rapisarda, D. Voulot, F. Wenander, M. Zielinska et al.

Lund, Oslo, Liverpool, Cologne, York, Manchester, Warsaw, Leuven, Edinburgh, Darmstadt, Jyvaskyla, Munich, CERN, MSU, CEA...

Goals:

- Errors for the B(E2; 0-> 2+) are on the 10-30\% level. Comparison between models now requires higher precision.
- No measurements of the lifetimes of the higher lying states below the 6^{+}isomeric states has been performed beyond ${ }^{112} \mathrm{Sn}$.

This includes the $2^{+}{ }_{2}, 0^{+}, 4^{+}$and $3^{-}{ }_{1}$ states

- Explore quadrupole moments
- Comparison of effective charges in $2^{+}, 4^{+}$and 6^{+}states as test of correlations across gap

Results so far at $3 \mathrm{MeV} / \mathrm{u}$

- ${ }^{110} \mathrm{Sn}$
- $108,106 \mathrm{Sn}$
- ${ }^{104,102,100} \mathrm{Cd}$
- 106,108 In
- ${ }^{107}$ Sn
- ${ }^{109} \mathrm{Sn}$
- ${ }^{107}$ In

PRL 98172501
PRL 101012502
PRC 80054302
EPJ A 44335
EPJ A 48105
PRC 86031302 (R)
Submitted to PRC
$\mathrm{B}\left(\mathrm{E} 2 ; 0^{+}->2^{+}\right)$
$\mathrm{B}\left(\mathrm{E} 2 ; 0^{+}\right.$-> $\left.2^{+}\right)$
$\mathrm{Q}\left(2^{+}\right)$and $\mathrm{B}(\mathrm{E} 2)$
Multiplets
Single-particle order
Collective and s.p. excitation
Core excitation model

Model Space

Starting point

Shell model B(E2)

Even mass Sn isotopes. Theoretical B(E2) values

LUND

- Starting point: truncated spaces

Other developments: RQRPA

A. Ansari PLB 62337 (2005)

Other developments: RQRPA

FIG. 9. Same as Fig. 8 for the $B(E 2) \uparrow$ transition rates.
A. Ansari \& P. Ring PRC 74054313 (2006)

Other developments: Experiments

A. Jungclaus et al. PLB 695110 (2011)

D. Voitenkov et al. PRC 85054319 (2012)

Quadrupole moments: An example

Selection of different targets and/or angles.
Well known and under full control using GOSIA code
A. Ekstrom et al. PRC 80054302

Some technical details

- Beams: ${ }^{110,108,106} \mathrm{Sn} @ 4.5 \mathrm{MeV}$
- Explore ${ }^{104}$ Sn intensity with new solid state RILIS
- Target: ${ }^{206} \mathrm{~Pb}$ is safe up to $\sim 140^{\circ}$ at $4.5 \mathrm{MeV} / \mathrm{u}$
- Backscattering gives sensitivity to $\mathrm{Q}\left(2^{+}\right)$
- Kinematical selection of target or projectile can be done using forward located CD. Detectors for coincidence measurement of $2 p$ events exist (T-REX and LuSia)
- Planned setup: MINIBALL + CD

Kinematics: examples Ni and Pb

Two-body scattering; extension of detection range possible by complementary detection of target and projectile.

Kinematics: an example for Pb target

- Relative yields

Relative yield first 2+ state

- Relative yields

Relative yield first 4+ state

LUND

- Relative yields

Beams

Target: LaCx + RILIS.
${ }^{110}$ Sn: up to 1 E 7 pps , main contaminant ${ }^{110}$ In at 10%
${ }^{108}$ Sn: up to 1 E 7 pps , main contaminant ${ }^{108}$ In at 40%
${ }^{106}$ Sn: up to 1 E 5 pps , main contaminant ${ }^{106} \mathrm{In}$ at 70%

Measured rate for contaminant depends on beam gate settings
In addition: explore ${ }^{104} \mathrm{Sn}$ with new solid state RILIS

Count rate estimates

Using yields and intensities measured in the $3 \mathrm{MeV} / \mathrm{u}$ campaign and for comparison integrating the yield only over the scattered beam in the CD detector 10 shifts will give:

Isotope/transition	$2^{+} \rightarrow 0^{+}$	$4^{+} \rightarrow 2^{+}$
${ }^{110} \mathrm{Sn}$	$\sim 1.4 \mathrm{E} 5$	~ 700
${ }^{108} \mathrm{Sn}$	$\sim 1.4 \mathrm{E} 5$	~ 700
${ }^{106} \mathrm{Sn}$	$\sim 1.8 \mathrm{E} 3$	

If the full safe angle is used e.g. via complementary detection of beam and target particles, the yield for the $2+$ transition increases by ~ 2.1 and for the $6+$ transition by ~ 5.8.

Beam time request

We ask for 10 shifts each for the isotopes ${ }^{110,108,106} \mathrm{Sn}$ giving a total of 30 shifts that can be divided over 2 years.

> Thank you!

${ }^{112}$ Sn Coulomb excitation

336
N.-G. Jonsson et al. / Collective states

(coincidence)
N.-G. Jonsson et al. NPA 371333 (1981)

The ${ }^{112}$ Sn level scheme

2549	$6+14 \mathrm{~ns}$
2521	4+
2476	(2+)
2355	3-
2248	4+ 3.3 ps
2191	0+
2151	$2+1.4 \mathrm{ps}$
1257	$2+0.37 \mathrm{ps}$
0	0+

-
 Generalized Seniority: Two level model

I. O. Morales, P. Van Isacker, I. Talmi PLB 703606 (2011)

