

ISOLDE Technical Report

INTC Meeting 31st October 2012
Richard Catherall EN-STI

Outline

- Separator Operations
 - > GPS extraction electrode failure
 - > Interventions
 - > Controls
- Targets
- REX
- RILIS
- Radiation protection monitoring

Separator Operations: GPS Frontend

Separator Operations: GPS Frontend

GPS FE Status

- Intervention to confirm/remove target was successful.
- Plug target has been installed by the robot
- The Helicon target can be accommodated on the GPS FE with little modifications required.
 - > Extraction electrode ideally positioned with respect to ion source.
 - Decision approved by ALARA level 3 committee
- Possibility to save ~ 2 weeks of physics
 - → ⁹C, ^{31, 35}Ar -> CaO target
- A plug target to be put back on after Helicon target.
- Full repair to be carried out during LS1
 - ➤ Not a trivial matter. Cause unknown

Separator Operations: Interventions

- GPS.FC490
 - Greasing of faraday cup piston
 - Replacement of faraday cup with spare
 - ✓ Vacuum leak on lower flange of FC
 - Greasing of spare faraday cup.
- HRS.FC490...2 weeks later
 - > Replacement of faraday cup with HRS.FC300
 - ✓ Vacuum leak on bellows
- Laser windows
 - Replacement of oring on laser window
 - ✓ Oring "seen" by laser light causing it to burn
- BTY line
 - Leak found at penning gauge near primary pumps

Separator Operations: Controls

- ACCOR > Accelerator controls renovation project
 - ➤ More than 600 devices moved from GM to FESA (CERN standard)
- InCA > Injector Control Architecture
 - > After 2 test days, implemented on the 8th October
- ISOLDE Synoptic Editor and player
 - > Easy configuration
 - Global or detailed view
 - Visible on the web.

Static molten salt target for ¹⁸Ne* for β-beams

Featured (with ⁶He beams) in CERN activity report and EPN (43/5)

E. Noah (UNIGE),

EN-MME, TE-VSC

DOC

* And record yields of

T. Mendonca (CERN), 11C as CO+

New n converter – phase I

Tests of simulations with geometry I: Predicted n-rich Zn/Rb improvement of \sim x20

New converter geometry I : 5^e3 80Zn, 5^e1 80Rb / μ C 600 81Zn, $^{\sim}5^e2$ 81Rb/ μ C

→ Measured improvement ca x200 (instead of x20)

Yet some teething problems: clear thermal and mechanical weaknesses

Onboard for phase II (2014): Keeping the same Impurity/beam improvement, and increase of yield

R. Luis et al, EPJ A 2012 TISD team, S. Marzari, B. Crepieux

152Tb MEDICIS test batch shipped in August to Lausanne

REX-ISOLDE

- First spin-polarized beam (8Li) produced with the tilted foils method after the REX linac.
- Difficult ⁶He through REX to Optical Time Projection Chamber (OTPC).
- TwinEBIS cryostat repaired;
 B-field being aligned.
- REX separator and linac successfully tested with $A/q=2 \Rightarrow important for TSR$.
- Positive preliminary tests of pulse shortening from REXEBIS => important for TSR.

RILIS operation

By now ion beams of 10 elements were produced with RILIS in 2012

Laser ON time in 2012:

3000 h – Expected by end of **2012**

2590 h - by 25 October

Availability of two complementary laser systems (Dye and Ti:Sapphire) has ensured the increase of RILIS beam time

Beam	Sm 2 runs	Ca 2 runs		At 2 runs				Mg 4 runs	Po 2 runs			Cu	Mn
Planned	208	272	192	300	172	446	88	296	206	96	198	112	148
Real	212	359	253	345	262	278 12	111	378	206	65	124		

Laser Ion Source and Trap (LIST) On-Line at ISOLDE

LIST device:

repeller

terminals

LIST assembly:

Ionization and suppression of contaminants by LIST:

- LIST was successfully tested with UCx-target -> No loss of performance over 5 days
- Suppression of Na-, Al-, K-, Fr-, U-isotopes studied -> Suppression factors varied from 100 to 1000
- Laser ionization of radioactive Mg and Po in LIST

Fr suppression and laser ionization of Po in LIST

First ever LIST on-line physics result: hyperfine structure of ²¹⁷Po

Radioprotection

New radioprotection monitoring to be installed during LS1

→Additional stations to allow more accurate survey of dose rates around beam line

Instrumentation GRAMS

- O Sonde gamma (16)
- Unité centrale (11)
- Unité d'alarmes (11)

Instrumentation RAMSES

- O Chambre d'ionisation XRM (2)
- Chambre d'ionisation AMF (6)
- Chambre d'ionisation IAM (4)
- Unité d'alarmes (8)
- O Moniteur mains-pieds HFM (2)

Acknowledgements

T. Stora EN-STI

D. Voulot
BE-OP

F. Wenander BE-ABP

E. Piselli BE-OP

E. Siesling
BE-OP

J.L. Grenard EN-HE

V. Fedosseev EN-STI

D. Fink
EN-STI

A. P. Bernardes EN-STI

A. Stadler EN-STI

S. Marzari EN-STI

T. Giles
EN-STI

Martino Giordano Ferrari BE-OP

...and the ISOLDE team.