Física Nuclear Nuclear Physics

Instituto de Estructura de la Materia - Consejo Superior de Investigaciones Científicas

Magnetic moment and lifetime measurements in ¹⁴⁰Ba

(following HIE-ISOLDE Letter of Intent I-093)

Proposal to the INTC Committee

<u>A. Jungclaus</u>, C. Bauer, M. Danchev, R. Gernhäuser, A. Illana, P. John, Th. Kröll,
D. Mücher, E. Nacher, R. Orlandi, A. Perea, N. Pietralla, G. Rainovski, E. Rapisarda,
P. Reiter, M. Scheck, M. Seidlitz, B. Siebeck, C. Stahl, J. Taprogge, D. Voulot,
N. Warr, F. Wenander and the MINIBALL collaboration

Instituto de Estructura de la Materia, CSIC, Madrid University of Sofia INFN Padova Universität zu Köln TU Darmstadt TU München KU Leuven CERN, Geneva

ISOLDE-CERN October 31, 2012

LoI I-093: Magnetic moment measurements in A~140 Te, Xe, Ba and Ce isotopes using the Transient Field technique

Low B(E2) value in ¹³⁶Te !

Neutron dominated 2⁺ wavefunction ?

g factor measurement will tell !

 $g(2^+)$ in ¹³⁶Te main goal of LoI I-093, but has to wait until Te beams are available.

Meanwhile ...

N. Benczer-Koller et al., PLB 664(2008)241

Spherical-deformed transition in the ₅₆Ba isotopes

MINIBALL: *C. Bauer et al.*, *PRC86 (2012) 034310* SM: N. Shimizu et al., PRL. 86 (2001) 1171 T. Otsuka et al., PPNP. 47 (2001) 319 QPM: *T.K. Dinh et al.*, *JPG18 (1992) 329* BMF: *J.L. Egido, priv. comm.*

Projectile Coulomb excitation and transient fields

- Coulomb excitation on a C layer
- recoil through a thick polarized Gd layer in which the magnetic moment of the excited state interacts with the transient field (Larmor precession)
- beam ions stopped in a non-magnetic Cu backing
- C target reoils detected in Si detectors

Observe precession of γ -ray angular correlation !

Result: $g(2_1^+)$ with sign !

<u>Problem</u>: Target thickness $\geq 10 \text{ mg/cm}^2 \implies \text{beam straggling} \implies \text{activation }!$

New IEM target chamber for Transient Field experiments with MINIBALL at REX-ISOLDE

IS483: 4 MINIBALL clusters in a horizontal plane

Clusters as seen from the target position:

Compact geometry !

+65° ⁄

-50

 $+115^{\circ}$

+5° >

November 2011

IS483: $g(2_1^+)$ in ⁷²Zn using projectile Coulex and TF

Only third successful TF g factor measurement with radioactive beams !

Previous runs at Oak Ridge: $g(2_1^+) = +0.28(15)$ in ¹³²Te $T_{1/2}=76.3$ h N. Benczer-Koller et al., PLB664 (2008) 241 $g(2_1^+) = -0.25(21)$ in ¹²⁶Sn $T_{1/2}=10^5$ a G.J. Kumbartzki et al., PRC86 (2012) 034319

Identification of 2⁺ mixed-symmetry state in ¹⁴⁰Ba

Due to the two-fluid nature of nuclear matter:

2⁺ states in <u>even vibrational nuclei</u> appear as <u>symmetric</u> or <u>antisymmetric</u> combination of the involved proton and neutron configurations.

Main signature for a 2_{ms}^{+} state:

Strong $2_{ms}^{+} \rightarrow 2_{1}^{+} M1$ decay (large absolute B(M1) value)

Systematics of 2_{ms}^+ states in N=80,84 isotones

 132 Te

<u>First</u> identification of a 2_{ms}^+ state in an unstable nucleus !

M. Danchev et al., Phys. Rev. C84 (2011) 061306(R)

Relation between single-particle structure and ms state properties !

 2_3^+ at 1994 keV in ¹⁴⁰Ba proposed as ms candidate on the basis of the small mixing ratio of the 2_3^+ → 2_1^+ transition

W.D. Hamilton et al., Phys. Rev. Lett. 53 (1984) 2469

 $\tau(2_3^+)$ needed to fix ms character !

Experimental excitation scheme of ¹⁴⁰Ba

MINIBALL: C. Bauer et al., PRC86 (2012) 034310

T.K. Dinh et al., J. Phys. G18 (1992) 329

Use experimental B(E2; $0_1^+ \rightarrow 2_1^+$) and theoretical B(E2; $0_1^+ \rightarrow 2_3^+$) for beam time estimate.

Expected lineshape of the $2_3^+ \rightarrow 2_1^+ 1392$ keV transition

• MINIBALL crystal at $\Theta = 50^{\circ}$ with respect to the beam

• C - Gd - Cu multilayer target

Beam time estimate

Assumptions

<u>Multilayer target:</u> 1.0 mg/cm² C + 9.0 mg/cm² Gd + 1.0 mg/cm² Ta + 6.5 mg/cm² Cu <u>Beam:</u> ¹⁴⁰Ba @ 3.36 MeV/u with average intensity of $5x10^6$ pps on reaction target (measured in IS411) <u> γ -ray detection efficiency:</u> 0.5% at 0.6 MeV and 0.3% at 1.4 MeV for each crystal (d=10 cm) <u>Charged particle detection:</u> Four 20x20 mm² segmented Si (only two for g factor analysis)

Within <u>15 shifts</u> with beam on target:

- $g(2_1^+)$ uncertainty of 10% for $g(2_1^+) = 0.3$ and 20% for $g(2_1^+) = 0.1$
- 100 counts per crystal for the $2_3^+ \rightarrow 2_1^+$ transition (1392 keV) (at least 2 crystals are positioned at similar polar angle Θ)
 - sufficient to get at least an upper limit on $\tau(2_3^+)$ - corresponding to a lower limit on B(M1; $2_3^+ \rightarrow 2_1^+)$

Two different targets used in IS483

•

•

Activation !

Smaller effects !

"thick target": $0.48 \text{ mg/cm}^2 \text{ C} + 11.8 \text{ mg/cm}^2 \text{ Gd} + 1.0 \text{ mg/cm}^2 \text{ Ta}$

excited projectiles stopped \rightarrow full anisotropy observed

thick $Gd \rightarrow maximum$ precession angle

• huge straggling \rightarrow a lot of radioactivity close to the Ge

⁷²Zn beam @ 2.94 MeV/u 10-50 pA, 20^+ 3x10⁶ – 1.5x10⁷ pps

"thin target": $1.0 \text{ mg/cm}^2 \text{ C} + 6.7 \text{ mg/cm}^2 \text{ Gd} + 1.0 \text{ mg/cm}^2 \text{ Ta}$

excited projectiles leave target \rightarrow deorientation \rightarrow reduced anisotropy observed

thinner Gd \rightarrow smaller precession angle

less straggling \rightarrow reduced radioactivity close to the Ge

IS483: $g(2_1^+)$ in ⁷²Zn using projectile Coulex and TF

Comparison between "thin" and "thick" target data

 $42 h - 1 mg/cm^2 C$

11.450 counts total in 653 keV 2→0 peak up: 5.072, down: 4.802

 $28 h - 0.48 mg/cm^2 C$

1.941 counts total in 653 keV 2→0 peak up: 917, down: 1.016

Angular correlations W(Θ) and precession angles $\Delta \Phi(\Theta)$

Analysis at the level of individual MINIBALL segments !

How can we measure the g factor of ps excited states

Recoil-in-vacuum method

hyperfine interaction between aligned nuclear and randomly oriented electron spin

precession of nuclear spin about <u>random axes</u>

observe <u>attenuation</u> of γ -ray angular correlation

 $W(\theta,t)=1+a_2G_2(t)P_2(\cos\theta)+a_4G_4(t)P_4(\cos\theta)$

N.J. Stone et al., Phys. Rev. Lett. 94 (2005) 192501

Result: $|g(2_1^+)|$

Transient Field technique

hyperfine interaction between aligned nuclear and oriented electron spin

precession of nuclear spin about <u>fixed axis</u> (external field)

observe <u>precession</u> of γ -ray angular correlation

 $W(\theta,t)=1+a_2P_2[\cos(\theta-\omega_{L}t)]+a_4P_4[(\cos(\theta-\omega_{L}t)]$

Result: $g(2_1^+)$ with sign

Possible origin of the low B(E2) value in ¹³⁶Te

balanced protonneutron composition

¹³² Te ₈₀	¹³⁴ Te ₈₂	¹³⁶ Te ₈₄
974 keV	1279 keV	606 keV
p ² n ⁻²	p ²	p ² n ²
$^{130}Sn_{80}$	$^{132}Sn_{82}$	$^{134}Sn_{82}$
1221 keV	doubly-magic	762 keV
n ⁻²		n^2

neutron dominated wavefunction

decrease of proton-neutron coherence in E2 transition; small effective charge for neutrons

reduced strength of $2\rightarrow 0$ transition, e.g. small B(E2)

How can one possibly prove this simple picture?

• measure $g(2^+)$ in ¹³⁶Te

• search for a mixed-symmetry state in ¹³⁶Te