

Single-Particle Structure in Neutron-rich calcium isotopes P-358

Sean J Freeman
INTC October 2012

2+ Energies

Predicted effective single-particle energies

- Neutron-rich region of the fp shell attracted interest associated with testing shell models, development of collectivity and with shell stability.
- For example, a N=32 gap in Ca disappears with increasing Z due to accumulating attractive effect on $vf_{5/2}$ by $\pi f_{7/2}$ closing gap beyond Cr.

Some shell model interactions predict a sizeable N=34 gap due to large $vf_{5/2}$ - $p_{1/2}$ separation:

- •GXPF1A: increases to N=34 due to trends in ESPE.
- •KB3G: small and stays roughly constant.

Persists in more microscopic calculations, albeit somewhat weaker than in GXPF1A.

Experimental situation difficult:

- ⁵⁴Ca direct spectroscopy very hard.
- Other approaches (out as far as ⁵²Ca) lead to ambiguous conclusions; usually only energies and tentative spins.

Probe single-particle nature of ground and lowlying states in ⁵¹Ca using the (d,p) reaction.

Experiment

- $d(^{50}Ca,p) @ 5.5 MeV/u$.
- HIE energies give confidence to singlestep mechanism.
- Expect at least 4x10⁵ pps at HRS; >10⁴ on target.
- ⁵⁰Ti expected beam contaminant.
- Requires good Q-value resolution to disentangle, if beam and contaminant of the same order of magnitude.
- Monitoring of contaminant levels using Si/Bragg detector and passive beam attenuator.

Method: Solenoid

Measure: E_{lab} and z. T_{cvc} for particle id, less important for (d,p)

$$E_{\rm cm} = E_{\rm lab} + \frac{mV_{\rm cm}^2}{2} - \frac{mzV_{\rm cm}}{T_{\rm cyc}}$$

- Solenoidal field, on-axis Si measure E_{lab} as function of z
- Linear function, rotate to get *E** spectrum.
- E^* resolution combination of lab E_{lab} resolution (including Si resolution and beam spot size) and contribution from z resolution (small), if beam energy is well defined.
- If target losses significant, limits E_{lab} resolution, but NOT compounded in E^* by compression.

Example: d(132Sn,p)133Sn @ 8 MeV/u 2T

MANCHESTER 1824

- Requires <120 keV resolution to cope with beam contaminant.
- Requires measurement of groundstate.
- Solenoid will provide ~80keV: simulation with 0.1% energy resolution, 3mm beam spot and 100μg/cm² target.
- Similar to expectations based on HELIOS operation at Argonne.
- Estimate in 10 shifts could measure down to a level of C²S=10%.

Method: Si array only

- Traditional Si array: measure E_{lab} as function of ϑ_{lab} .
- Kinematic shift limits E_{ρ} resolution by opening angle.
- Transformation LAB (E_{lab}) to CM (E^*) is non-linear. Compression of E_{lab} spectrum to E^* spectrum, compounds effective Q-value resolution.
- If target losses are a significant contribution gives E_{lab} resolution similar to solenoid, compounded in E^* spectrum by compression.

$$\kappa = \frac{1}{p} \frac{\mathrm{d}p}{\mathrm{d}\theta}$$

Method: Si plus gammas

- Traditional Si array: measure E_p as function of ϑ_{lab} with γ -ray coincidences.
- Thick target to compensate ε_{γ} but compromises E_{ρ} resolution.
- Very best resolution in E_{ν} so precise energy levels.
- Need BR and ε_{γ} for absolute yield of coincidences; may or may not be well known or well measured.
- Always need particle spectrum for angular distribution; poor resolution, but may be cleaned by E_{ν} gate.
- Could use $p-\gamma(\vartheta)$ correlation analysis; needs statistics.
- Can't do ground state and difficult with long isomers.

Excellent energy resolution.

Usually at mercy of feeding pattern when comes to deducing reaction yield and angular distribution.

Conclusions?

What Q-value resolution do we really need?

Always cases of close doublets?

Often tens of keV okay: selectivity of reactions often leads to low level density in observed spectrum?

But higher energy regions? Especially with deformation?

Coped near stability with 10-50 keV with traditional magnetic spectrometers?

What method do we really need?

Flexibility to suit science case, and generate biggest scientific return.

Development of both to find ultimate solution:
e.g. Add Ge to solenoid? TRS in-ring Si array? Solenoid after TRS? etc.

