Study of the unbound proton-rich nucleus ²¹Al with resonance elastic and inelastic scattering using an active target

> Following LoI : CERN-INTC-2010-025/INTC-I-094 (M. J. Borge et al.)

B. Fernández-Domínguez (Univ. Santiago de Compostela, Spain) Olof Tengblad (CSIC-Madrid, Spain) M. Caamaño (Univ. Santiago de Compostela, Spain)

The N=8 shell gap at the proton-drip line known up to ²⁰Mg

The next isotope in the chain is ²¹Al -> no experimental data

Excitation energy spectrum in ²¹Al

N. Timofeyuk et al. PRC 86, 034305 (2012)

Microscopic Channel Model (MCM)

- The ground state energy in mMCM disagrees with the $T_{1/2}$ <35 ns.
- sMCM predits a large Thomas-Ehrman Shift
- sMCM energies are in agreement with ²¹Ne-²¹Na, ¹⁹O-¹⁹Na

Excitation energy spectrum in ²¹Al

J. D. Holt et al. arXiv:1207.1509v2 [nucl-th] (2012) Chiral (3N-forces)

- 3n-forces bring repulsive terms to the N=8 isotones
- Ground state energy placed at -2.46 and -1.69 MeV for sd/sdfp
- The positions of the energies in ²¹Al influence the binding energy of ²²Si

Widths of resonances in ²¹Al

Narrow resonance states

The main decay channel has much smaller energy and is longer hold by the Coulomb barrier

B=A+1 Core + 1 nucleon

N. Timofeyuk et al. PRC 86, 034305 (2012) based on :

ANC ²⁰O(d,p)²¹O TIARA collaboration B. Fernández-Domínguez PRC 84, 029902(E) (2011)

- Γ<< Ε_r
- $3/2_1+$, $5/2_2+$ s-wave motion around 2+
- $7/2_1$ + d-wave motion around 2+

AIMS OF EXPERIMENT

Clear discrepancies between the models and no experimental data available.

The ²¹Al is a key nucleus to :

- Understand isospin symmetry-breaking effects.
- Restrict the 3N-forces at the proton drip line along the N=8 isotonic chain.
- Study the effect of core excitations in narrow resonances.

Goals :

- To locate the 1/2+ level in ²¹Al that brings information on the Thomas-Ehrman shift.
- To measure the energy spectrum of ²¹Al which is a N=8 isotone with the resonance elastic scattering reaction.
- To measure the widths narrow unbound resonances to investigate via inelastic scattering the strength of core excitations.

Resonance elastic , ${}^{20}Mg(0^+)$, and inelastic, ${}^{20}Mg(2^+)$, scattering.

EXPERIMENTAL TECHNIQUE

Active Targe -> MAYA (GANIL, France)

MAYA @ ISOLDE

"Study of ¹³Be through IAR" (Summer 2012) *R. Raabe IS-203*.

OUR EXPERIMENT

²⁰Mg HIE-ISOLDE beam – (5.5 MeV/n ~50 pps) MAYA filled with C_4H_{10} @ ~100 mbar DC+Si+CsI for Δ E-E (FWHM_{CM}=50 keV) Diamond for veto coincidences MAYA-Range for beam-like particles - (²⁰Mg)

<u>ADVANTAGES</u> compared to conventional thick target method:

- 1) Background from C can be discriminated.
- 2) Inelastic and elastic can be separated.

EXPERIMENTAL TECHNIQUE

Recoil Kinematics (proton)

Measurements -> Observables

- Recoil protons E and θ -> Excitation function of the compound nucleus.
- Total path -> Select the inelastic channel and contamination.
- R-Matrix analysis of the excitation function-> Spectroscopic Properties: E_p,J^π,Γ
- Large angular coverage -> Angular distributions.
- ²⁰Mg+¹²C channels -> obtained simultaneously in the same experiment.

CROSS SECTIONS

CROSS SECTION CALCULATIONS (from N. Timofeyuk, Univ. Surrey (UK))

- The location of the 1/2+ state differs between the models
- The ground state 5/2+ would be seen if closer to J. Holt's predictions
- Narrow resonances are expected above the ²⁰Mg(2⁺) threshold

COUNTING RATE ESTIMATES

- Assuming Estimated I : 500 of ${}^{20}Mg/\mu$ C (ϵ_{REX} = 10%) (T=50% if stripper foil @ linac)
 - I (²⁰Mg) =50 pps (25 pps if stripper foil)
 - Excitation function built on steps of 50 keV in E_{CM}
 - Average cross section $\langle \sigma_i^{\text{elast/ine}} \rangle = 203 \text{ mb}, 8.1 \text{ mb}$
 - Angular bin of ± 15 degrees around θ_{CM} = 150°
 - ~13 days of measurements

Table: Yield estimates without (white) and with (shadow) stripper foil. * Double angular bin for the inelastic scattering.

Channel	Yield (c/h/bin)	Yield tot (c/bin)	Error(%)
Elastic	3.0 x 10 ⁻¹	100	~ 10 %
Inelastic *	2.5 x 10 ⁻²	10	~ 30 %
Elastic	1.5 x 10 ⁻¹	50	~ 15 %
Inelastic *	1.25 x 10 ⁻²	5	~ 45 %

BEAM TIME REQUEST

DAY-I Experiment- Readily feasible with MAYA.

COLLABORATION

B. Fernandez-Dominguez¹, O.Tengblad², M. Caamaño¹, H. Alvarez¹, J. Benlliure¹, W. N. Catford³, J. Cederkall⁴, D. Cortina¹, F. Delaunay⁵, P. Descouvemont⁶, F. Farget⁷, F.Flavigny¹⁰, H. O. U. Fynbo⁸, J. Gibelin⁵, G. F. Grinyer⁷, D. Loureiro⁷, B. Jonson⁹, E.Nacher², T. Nilsson⁹, R. Orlandini¹⁰, N. Orr ⁵, C. Paradela ¹, J. Pancin⁷, G. Randisi¹⁰, R. Raabe¹⁰, F. Renzi¹⁰, K. Riisager⁸, T. Roger⁷, S. Sambi¹⁰, D. Suzuki¹¹, N. Timofeyuk³, J. S. Thomas¹², M. Vanderbrouck¹¹.

- 1) Universidade de Santiago de Compostela, 15754 Santiago de Compostela, Spain 2) Instituto de Estructura de la Materia, CSIC, Madrid, Spain
- 2) Instituto de Estructura de la Materia, CSIC, Madrid, Spain
- 3) Department of Physics, University of Surrey, Guildford GU2 5XH, UK
- 4) Department of Physics, Lund University, SE-221 00 Lund, Sweden
- 5) LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, 14050 Caen, France
- 6) PNTPN, C.P. 229, Université Libre de Bruxelles, B-1050 Brussels, Belgium
- 7) GANIL, BP 55027, 14076 Caen Cedex 5, France
- 8) Institut for Fysik og Astronomi, Arhus Univ., Arhus, Denmark.
- 9) Fundamental Physics, Chalmers University of Technology, Goteborg, Sweden.
- 10) Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Celestijnenlaan 200d B-3001 Leuven
- 11) Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, France
- 12) Schuster Laboratory, University of Manchester, Manchester, M13 9PL, UK