Precision tests of shape coexistence in the light krypton isotopes

David Jenkins and Wilton Catford on behalf of the solenoidal spectrometer collaboration

Very Prolate
Oblate
Triaxial

Systematics of the light krypton isotopes

$4 *$
65_{4}^{*}

Skyrme

experiment

Gogny
E. Clement et al., Phys. Rev. C 75, 054313 (2007).
S. Skoda et al., Nucl. Phys.A633, 565 (1998)

"Fingerprints of deformation"

B. Elbek and P.O.Tjom,Adv. Nucl. Phys. 3, 259 (I969)

In the present case, the spectra will be complex BUT we know level energies to high precision and so can do a fit.

Beamtime estimate and perspectives

Limit is $\sim 10^{4} / \mathrm{s}$ for one week run (from experience of HELIOS at Argonne National Laboratory)
${ }^{76} \mathrm{Kr}-3.6 \times 10^{6} / \mathrm{s}$ on target -12 shifts
${ }^{74} \mathrm{Kr}-\mathrm{I} .8 \times 10^{4} / \mathrm{s}$ on target -2 I shifts
Beams expected to be 100\% pure using Nb target and cooled transfer line strongly advantageous for "Day-I" experiment

