The (t,p) reaction on ®°Ni

B. P. Kay (York)
C. J. Chiara (Maryland/Argonne)
R. Raabe (Leuven)

INTC meeting, Oct 31-Nov 1, 2012.

Requested shifts: 18 shifts
Beam: 5 MeV/u ®°Ni
Target: tritiated Ti
Installation: solenoidal spectrometer



Overview

Motivated by rigorous discussion on the structure of ®8Ni at the Zakopane conference in September
(two results in 2012, one from GANIL and one from Argonne, and another coming soon)

Technique
Only other charged-particle approach is through 79Zn(*4C,'°0) two-proton removal
14C targets or beams are tricky—using e.g. HELIOS at Argonne is not an advantage
Easier to use two-neutron adding on to ®®Ni
v-ray work discussed shortly

So...°*8NiatZ=28 and N=40
Robustness of shell gaps brought into question
N = 40 not magic below ®8Ni (or even at ®8Ni?) e.g. °°Fe, %4Cr, and ®’Ni
Proposed proton intruder states important in low-lying structure of 4%®Mn, ©>-%8Co (rip3/2 from
above Z = 28), and ¢7%71Cu (mf7/, from below Z = 28)

68Ni
First excited state is a 0" level
First 2* high in excitation energy
Decays with a low B(E2:2*—0%) transition strength
Mass measurements show no indication of enhanced stability, and several theoretical studies
question the “doubly-magic” nature of ®8Ni



Low-lying states in Ni
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Some key questions to address

7759.8 T (13)
e The 1770(30) state: e )
- isitthere? what is its energy? 15870
e The 2202 keV, 0* of Dijon et al.:
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Latest level scheme from Broda et al., submitted (large-scale study of Ni isotopes around N = 40)



Comment on previous measurement with T-REX
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From a poster presentation by J. Elseviers at DREB 2012



Why choose a solenoidal spectrometer

Pure charged-particle spectroscopy:

e Resolution:
- charged-particle spectroscopy
with ~100-keV resolution

e No y-ray coincidence required:

- with several isomeric states
known, including those under
qguestion, it is challenging to do
y-ray spectroscopy

e The (t,p) populates non-yrast

states which may not be otherwise

seen in y-ray work

e Robust angular distributions, pretty

unambiguous J® assignments (if
sufficient statistics)
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Why choose a solenoidal spectrometer
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In 2010 the INTC endorsed a Letter of Intent for a solenoidal spectrometer at HIE-ISOLDE
(CERN-INTC-2010-031; INTC-1-099) spurred by success of the Argonne device.
Subsequently a project has been initiated by people from several groups.
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Solenoidal spectrometer set up
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e Though the focus is on low-lying states, will in practice populate all states up to and
beyond S,

e Essentially a ‘singles’ experiment—no recoil detection necessary, nor any explicit light-
ion identification

e Other open channels, including (t,a), (t,d), and (t,3He), either go forward or do not overlap
in E versus Az, and are also strongly suppressed due to Q value

e Only the ‘tail’ of protons from fusion-evaporation seen, easily dealt with



Solenoidal spectrometer set up
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e Even a modest Si array (e.g. the Argonne prototype of 35-cm length) would cover
sufficient angle range

e |tis clear a Q-value resolution (FWHM) of ~100 keV is important — greater than 150 keV
would limit the extraction of useful information

e The semi-continuous angular coverage from essentially 0 < 06 < 45° should allow for
unambiguous AL assignment

e Dominantly single-step transfer of a correlated pair of neutrons (other open channels
strongly suppressed)



Target considerations

e Will require a ‘thin’ target to get the estimated 100-keV c.m. resolution

e Simulations suggest a 0.35 um Ti:t foil ideal (125 ug/cm? Ti, 10 ug/cm? t)

e This is a factor of four times thinner than the ‘Munich’ target used in e.g. the (t,p)
reaction on 3°Mg by Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010) with T-REX

e This requires development and safety considerations (interest at TRIUMF and Argonne in
such targets may lead to all round better exploration of Ti:t targets)
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Simulations courtesy of Marc Labiche using NPTool framework based on GEANT4



Comment on transfer cross sections

Not only can the excitation energy and J™ be determined, but the cross section can tell us
the degree to which neutron configurations play a role in the final state. Some limited data
in the region. Some caution has to be taken interpreting the cross sections.

>ONi(t,p) °2Ni(t,p)
i i
- OONitp) 1 O*Ni(tp)
|
Ratio to g.s. cross section
I\ ! I ! | ! | | |
|
|
0.160 |- ! -
-cf:.; i —e— 0%, /g.s. Zn(t,p)
CE) ! —e— 073/g.s. Zn(t,p)
= 0.110 | 1 —e— 2% /g.s. Zn(tp)
§ i --o- 0% /g.s. Ni(t,p)
2 --e- 2%, /g.s. Ni(t,
£ 0.060} l i 179 Ni(tp)
|
|
|
0.010} -
30 44

W. Darcy, R. Chapman, and S. Hinds, Nucl. Phys. A170, 253 (1970)

F. R. Hudson and R. N. Glover, Nucl. Phys. A189, 264 (1972)



Summary

e |tisimportant to pin down the energies and spins of low-lying states in ‘doubly-magic’
®8Nji. In particular:
- The energy (or existence?) of the 1770-keV state
- What is the energy of the 37 state? Is it at 3302 keV?
- Resolve the question marks about the 2202-keV state (not there?)

e Significant benefits using the (t,p) reaction with a solenoidal spectrometer. Other
charged-particle reactions have suffered from poor resolution. Gamma-ray spectroscopy
cannot probe all states

e The intensity and purity of the °®*Ni beam at ISOLDE, and the resolving power of a
solenoidal spectrometer, present the possibility for a detailed study of ®¢Ni that will

highly complement previous studies of this nucleus

e Rate estimates are straight forward and detailed in the proposal — we request 18 shifts



