The (t,p) reaction on 66Ni

B. P. Kay (York)
C. J. Chiara (Maryland/Argonne)
R. Raabe (Leuven)

INTC meeting, Oct 31-Nov 1, 2012.

Requested shifts: 18 shifts

Beam: 5 MeV/u ⁶⁶Ni

Target: tritiated Ti

Installation: solenoidal spectrometer

Overview

Motivated by rigorous discussion on the structure of ⁶⁸Ni at the Zakopane conference in September (two results in 2012, one from GANIL and one from Argonne, and another coming soon)

Technique

Only other charged-particle approach is through 70 Zn(14 C, 16 O) two-proton removal 14 C targets or beams are tricky—using e.g. HELIOS at Argonne is not an advantage Easier to use two-neutron adding on to 66 Ni γ -ray work discussed shortly

So ... 68 Ni at Z = 28 and N = 40

Robustness of shell gaps brought into question N=40 not magic below ⁶⁸Ni (or even at ⁶⁸Ni?) e.g. ⁶⁶Fe, ⁶⁴Cr, and ⁶⁷Ni Proposed proton intruder states important in low-lying structure of ^{64,66}Mn, ⁶⁵⁻⁶⁸Co ($\pi p_{3/2}$ from above Z=28), and ^{67,69,71}Cu ($\pi f_{7/2}$ from below Z=28)

⁶⁸Ni

First excited state is a 0⁺ level

First 2⁺ high in excitation energy

Decays with a low $B(E2:2^+\rightarrow 0^+)$ transition strength

Mass measurements show no indication of enhanced stability, and several theoretical studies question the "doubly-magic" nature of ⁶⁸Ni

Low-lying states in ⁶⁸Ni

Some key questions to address

- The 1770(30) state:
 - is it there? what is its energy?
- The 2202 keV, 0⁺ of Dijon *et al*.:
 - Confirm, or otherwise, the findings of Chiara *et al*.
- Is the 3302-keV state the 3⁻ state in ⁶⁸Ni?
 - An important gauge of octupole collectivity
- Confirm the 4⁺ states at 3147 (lowest) and 3405 keV
- Assign spin-parity of states fed by the β decay of the low-spin isomer in ⁶⁸Co, perhaps help with the debate as to whether it's 1⁺ or 3⁺
- Neutron configurations of these states

Comment on previous measurement with T-REX

- (*t*,*p*) on ⁶⁶Ni studied at ISOLDE in September 2011 using T-REX and Miniball (IS504)
- Beam energy of 2.65 MeV/u,
 4.2×10⁶ pps with better than
 86% purity
- The 'Munich' Ti:t target which is 500 μ g/cm² Ti, 40 μ g/cm² t
- Charged-particle resolution of ~1000 keV at FWHM
- Preliminary analysis suggests ground state and 2034-keV 2⁺ state seen. No evidence of 0⁺ states at 1770, 2511 keV (isomeric)

Why choose a solenoidal spectrometer

Pure charged-particle spectroscopy:

- Resolution:
 - charged-particle spectroscopy
 with ~100-keV resolution
- No γ -ray coincidence required:
 - with several isomeric states known, including those under question, it is challenging to do γ -ray spectroscopy
- The (t,p) populates non-yrast states which may not be otherwise seen in γ -ray work
- Robust angular distributions, pretty unambiguous J^{π} assignments (if sufficient statistics)

Why choose a solenoidal spectrometer

Pure charged-particle spectroscopy:

- Resolution:
 - charged-particle spectroscopy
 with ~100-keV resolution
- No γ -ray coincidence required:
 - with several isomeric states known, including those under question, it is challenging to do γ -ray spectroscopy
- The (t,p) populates non-yrast states which may not be otherwise seen in γ -ray work

In 2010 the INTC endorsed a Letter of Intent for a solenoidal spectrometer at HIE-ISOLDE (CERN-INTC-2010-031; INTC-I-099) spurred by success of the Argonne device. Subsequently a project has been initiated by people from several groups.

Solenoidal spectrometer set up

- Though the focus is on low-lying states, will in practice populate all states up to and beyond S_n
- Essentially a 'singles' experiment—no recoil detection necessary, nor any explicit lightion identification
- Other open channels, including (t,α) , (t,d), and $(t,^3He)$, either go forward or do not overlap in E versus Δz , and are also strongly suppressed due to Q value
- Only the 'tail' of protons from fusion-evaporation seen, easily dealt with

Solenoidal spectrometer set up

- Even a modest Si array (e.g. the Argonne prototype of 35-cm length) would cover sufficient angle range
- It is clear a Q-value resolution (FWHM) of ~100 keV is important greater than 150 keV would limit the extraction of useful information
- The semi-continuous angular coverage from essentially $0 \le \theta \le 45^\circ$ should allow for unambiguous ΔL assignment
- Dominantly single-step transfer of a correlated pair of neutrons (other open channels strongly suppressed)

Target considerations

- Will require a 'thin' target to get the estimated 100-keV c.m. resolution
- Simulations suggest a 0.35 μ m Ti:t foil ideal (125 μ g/cm² Ti, 10 μ g/cm² t)
- This is a factor of four times thinner than the 'Munich' target used in e.g. the (t,p) reaction on 30 Mg by Wimmer et al., Phys. Rev. Lett. **105**, 252501 (2010) with T-REX
- This requires development and safety considerations (interest at TRIUMF and Argonne in such targets may lead to all round better exploration of Ti:t targets)

- Simulation assumes 125 μ g/cm² Ti, 10 μ g/cm² t
- A ⁶⁶Ni beam at 5 MeV/u (330 MeV)
- 3-mm beam spot
- 0.1% energy spread of beam
- 50-keV intrinsic Si resolution
- (Si will probably be much better, beam may be slightly worse, effect minimal)

Comment on transfer cross sections

Not only can the excitation energy and J^{π} be determined, but the cross section can tell us the degree to which neutron configurations play a role in the final state. Some limited data in the region. Some caution has to be taken interpreting the cross sections.

Summary

- It is important to pin down the energies and spins of low-lying states in 'doubly-magic'
 ⁶⁸Ni. In particular:
 - The energy (or existence?) of the 1770-keV state
 - What is the energy of the 3⁻ state? Is it at 3302 keV?
 - Resolve the question marks about the 2202-keV state (not there?)
 - ...
- Significant benefits using the (t,p) reaction with a solenoidal spectrometer. Other charged-particle reactions have suffered from poor resolution. Gamma-ray spectroscopy cannot probe all states
- The intensity and purity of the ⁶⁶Ni beam at ISOLDE, and the resolving power of a solenoidal spectrometer, present the possibility for a detailed study of ⁶⁸Ni that will highly complement previous studies of this nucleus
- Rate estimates are straight forward and detailed in the proposal we request 18 shifts