

Motivations to receive a 2 GeV proton beam at ISOLDE / HIE-ISOLDE:

Impact on radioisotope beam availability and physics program

INTC-0-16

Maria J.G. Borge, Magdalena Kowalska, Thierry Stora

Motivation for PSB energy upgrade for ISOLDE

Facility Figures of Merit:

- Beam intensity
- Beam quality:
 - Purity
 - Emittance
- Yearly availability of the facility
- For ISOL-type facility => diversity of available beams

Aim of proposal

Proton energy increase for ISOLDE:

- Increases diversity of available beams
- Increase s beam intensity

Present ISOLDE beams

Nearly 1000 isotopes of over 70 chemical elements – largest choice for any ISOL facility

ISOTOPE production channels at ISOLDE

Measurement in GSI

Measurement of production of protons on Lead in inverse kinematics

Production cross sections

Gain in yield due to p energy increase

Yield: Y = I X $\sigma_{\epsilon_{rel}} \epsilon_{ion} \epsilon_{sep} \epsilon_{transp}$ Proton beam intensity Production cross section

Target thickness Efficiencies (release, ionization, mass-separation, transport)

Increase in proton energy from 1/1.4 GeV to 2 GeV will increase the cross section (σ), and thus the yield

U. Koester, Eur. Phys. J. A15, 255 (2002)

Expected cross section/yield increase

Expected gains:

- fission products:1.4 on average;
- fragmentation products: x2 to x5;
- spallation products: over x6

2GeV proton driver will better recreate the EURISOL target

Impact on physics

- Most of HIE-ISOLDE proposals suffer from low intensity => unnecessary prolongation of beamtimes
- New and more exotic species will be available with the increase of intensities: from 1.4 for fission to almost an order of magnitude for spallation

Possible cases:

- Increase in neutron deficient nuclei: 20Mg, 31Ar, 35Ca, 100Sn, 114Cs
- Study of particle-gamma branches of states of astrophysical relevance for will become available
- Many examples were presented in HIE-ISOLDE proposals => number of requested shifts at the limit of target lifetime (due to low production)
- Detailed spectroscopy of neutron-rich nuclei, such as ⁵⁴Ca, will become available

Technical aspects

- Less heat deposition
- Larger beam dump
- Increased shielding and air activation

Summary

- The unique position of ISOLDE in the map of the worldwide facilities results from
 - Longstanding R&D program on target and ion sources -> new intense beams
 - ➤ The primary proton beam characteristics received from the Proton Synchroton Booster.
- The 2GeV proton beam will be develop for LHC and injected around 2017-2018
- AIM: To receive a 2GeV proton beam at ISOLDE to reinforce the leading position of ISOLDE/HIE-ISOLDE in the World map of the facilities by increasing still more the intensity

Expected gains:

- fission products:1.4 on average;
- fragmentation products: x2 to x5;
- spallation products: over x6
- Slight reduction in near-spallation products

