Study of the di-nuclear system ${}^{A}Rb + {}^{209}Bi (Z_1 + Z_2 = 120)$

Proposal for a HIE-ISOLDE experiment

Representatives:

Sophie Heinz (GSI Helmholtzzentrum and Justus-Liebig-Universität Gießen) Eduard Kozulin (Joint Institute for Nuclear Research, Dubna)

Where are the Next Magic Shells above ²⁰⁸Pb?

Shell closures are indicated by an increase of fission barriers and half-lives

- Nuclei with N ≈ 184 are not reachable with stable beams
- Nuclei with Z > 118 are still unknown

Neutron number

• The expected residue cross-sections are very low ($\sigma << 0.1$ pb)

But: Influence of shell closures is also expected in quasi-nuclei

Nuclear Reactions in Heavy Systems

Fusion residue cross-section:

$$\sigma_{\text{ER}} = \sigma_{\text{capture}} \times P_{\text{CN}} \times P_{\text{survival}}$$

The system ARb + 209Bi

⁹⁵Rb + ²⁰⁹Bi
$$\rightarrow$$
 Z₁ + Z₂ = 120, N₁ + N₂ = 184

- \rightarrow is the only accessible system to reach N = 184
- → is the only accessible system which provides CN excitation energies < 5 MeV


```
\begin{split} & E^*_{CN} < S_n \approx 10 \text{ MeV} \ \rightarrow \text{ no neutron evaporation} \\ & E^*_{CN} < B_f \approx 5 \text{ MeV} \ \rightarrow \text{ no CN fission?} \\ & E^*_{CN} < 0 \ \rightarrow \text{ no CN formation?} \end{split}
```

→ low excitation energies are equally expected in the nuclear molecule Rb + Bi

The CORSET Spectrometer

observables: TOF, E → A, TKE

• mass resolution: ΔA / A = 1.5 %

Example for CORSET Spectra

$$^{36}S + ^{238}U \rightarrow ^{274}Hs (Z = 108)$$

courtesy: Y. Itkis et al.

Asymmetric component → transfer, quasi-fission Symmetric component → fusion-fission

Proposed Experiment and Beamtime Request

Study of quasi-fission and fusion-fission with 94,95Rb projectiles:

- a) Study of the capture cross-section at three beam energies; for comparison with stable Rb (here: $\sigma_{capture} \approx \sigma_{QF}$ because $P_{CN} << 1$)
- b) Study of the contribution of fusion-fission reactions

Beamtime request:

Target: 500 µg/cm², ²⁰⁹Bi

Projectile	⁹⁴ Rb (or ^{85,87} Rb)	⁹⁵ Rb (~2×10 ⁶ pps)
beam energy	≈ 5 MeV/u	(4.0 - 5.5) MeV/u
experiment	Tuning of the setup	Excitation functions for capture and FF (6cap = 10 - 100) mb)
shifts	6	3 x 12
Expected events		(1000 – 10000) / d

Summary of requested shifts: 42

CORSET Spectra

 $^{64}\text{Ni} + ^{238}\text{U} \rightarrow ^{302}120^*$

Decay Chains of Z = 108 Isotopes

