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SIEMENS

Neural Networks @ Siemens: 25 Years of Research, Development, Innovation
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Mathematical Neural Networks
Complex Systems
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Existence Theorem:
(Hornik, Stinchcombe, White 1989)

3-layer neural networks can
approximate any continuous
function on a compact domain.
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Nonlinear Regression

Based on data identify an input-output relation
y = sz(vle)
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Neural networks imply a Correspondence of
Equations, Architectures, Local Algorithms.
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SIEMENS

Neural Networks are No Black Boxes

Application: Modeling of a Gas Turbine Model Output vs. actual NO,

» Inputs: 35 sensor measures and control
variables of the turbine

= Output: NO, emission of the gas turbine

Sensitivity Analysis: Compute the first
derivatives along the time series:
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A classification of input-output sensitivities:

constant over time (= linear relationship)

monotone (input can be used in 1dim. control

Inputs

)
non-monotone (only multi-dim control possible)
)

~zero (input useless in modeling and control
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Neural Forecasting of Wind Power Supply
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= Task: Forecast the wind energy supply of an entire wind field over the next 24 hours

= Solution: Deep Neural Network (DNN) with 10 hidden layers. Inputs are wind speed and direction
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Forecasting of Solar Power Supply

Total PV supply (scaled)

— PV Supply = SENN + Physics Physics SENN

1,60 -
1,40 -
1,20 -
1,00 -
0,80 -
0,60 -

0,40 -

0,20 ~

0,00
Forecast Horizon: 24h in minute time buckets (Test day, 2012-01-01)

Forecast the energy supply of a PV plant with a neural network
(SENN) based on weather forecasts and/or a physics based model

Data set: 2011-09-08 to 2012-01-23. Minute data (200k data points).

40k data points are randomly selected as test data.

Performance of a purely data-driven model (SENN) is comparable
to the physics based model

A hybrid model (SENN & physics) improves the forecast accuracy
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normalized Model Error

Forecast Error

6,0% -

5,5%

5,0% -

4,5% -

4,0% -

3,5% -

3,0%

SIEMENS

Model Error measured on Test Data
5,78%

4,45%

Physics SENN SENN + Physics
Model

— Physical Model
— Neural Network
— Combined Approach

Time
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Optimizing Sensors with Neural Networks

sensor signal target ( =1 if fire, =0 else )

! N\

NN-Output

water steam plastic fire

(time series of 2 different scenarios)
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Improve Optical Smoke Detectors:
« Smoke-poor fires are hard to detect

- Avoid false alarms caused by e.g. steam,

welding, exhaust fumes

Modeling with Neural Networks:

* Input: 3 inputs extracted from one sensor

over 40 time steps. 50 fire scenarios.

* Network Design: Feedforward network

including local and global modeling.

* Network Learning: Stochastic learning

including cleaning noise

* Result: Neural networks was able to

classify all patterns correctly
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Modeling of Open Dynamical Systems with Recurrent Neural Networks (RNN)

Y

T ( ) S, = tanh(Ast + But) state transition
S f( St)’”t : y, =Cs, output equation

ye = 8ls .

Tz t ) > (y - '} — min identification
u

Finite unfolding in time transforms

time into a spatial architecture. We @ @ @ @ @ @ @
assume, that x,=const in the future.

The analysis of open systems by o A & . o . e . e
RNNs allows a decomposition of ° @ @ @ @

its autonomous & external driven
subsystems.

B B B B
Long-term predictability depends @ @ @ @ P;ep;o;efs;cng:
t t t-1

on a strong autonomous subsystem.
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Modeling Dynamical Systems with Error Correction Neural Networks (ECNN)

An error correction system considers the
forecast error in present time as a reaction on

unknown external information. V; = g(st)

In order to correct the forecasting this error is T ; .
used as an additional input, which substitutes Z (yt =V )2 — U]f}l;l
the unknown external information. r=1 ’
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Combining Variance - Invariance Separation with ECNN

dynamics,
/epafaﬁo\ = The bottleneck autoassociator solves the
o : variance - invariance decomposition.
invariants variants,
o = The Error Correction Neural Network
identity forecast
solves the transformed temporal problem.
invariants variants,, : -
i » The sub-networks are implicitly coupled
wmb’”a”"” by shared weights.
dynamics,,
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Effective Load Forecasting with Recurrent Neural Networks

Load Forecasting for Electrical Energy Compression of Electrical Load Curves

Load Forecast vs. Actual Load

Task: Predict the upcoming energy
demand on a 15 min. time grid up to 5
days ahead.

Difficulty: Incorporate the impact of ex-
ternal influences on the energy demand.
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Intelligent Systems & Control
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Modeling Closed Dynamical Systems with Recurrent Neural Networks

S, = Atanh(st) .S, state transition
Vi = [Id,()]ft output equation
T
d P ; : 1
Z (yt =V ) — I}xlln identification

t=1

... but to understand the dynamics of the observables, we have to reconstruct at least a part

of the hidden states of the world. Forecasting is based on observables and hidden states.
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The ldentification of Dynamical Systems in Closed Form

Embed the original architecture into a larger architecture, which is easier to learn. After the
training, the extended architecture has to converge to the original model.

ld -Id -Id
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The essential task is NOT to reproduce the past observations, but to identify related
hidden variables, which make the dynamics of the observables reasonable.
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Approaches to Model Uncertainty in Forecasting

o} 1 Measure uncertainty as volatility (variance) of the
- Training Test target series. The underlying forecast model is a
constant. Thus sin(wt) can be highly uncertain!??

, | | | 2 Build a forecast model. The error is interpreted

e W ' ' ' ' - - g . -

‘8 Forecast * ¥ 10 as uncertainty in form of additive noise. The width
B Target Series Time of the uncertainty channel is constant over time.

3 Describe uncertainty as a diffusion process
(random walk). The diffusion channel widens over
time, e.g. scaled by the one-step model error.

0,05 1

0,00

For large systems 2 & = fail: We have to learn to

zero error — the uncertainty channel disappears.

4 One large model doesn't allow to analyze forecast
uncertainty, but an ensemble forecast shows the
characteristics of an uncertainty channel: Given a
finite set of data, there exist many perfect models

.| ofthe past data, showing different future scenarios
Forecast Horizon (in days) caused by different estimations of the hidden states.
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Control of Dynamical Systems with Recurrent Neural Networks

Questions to Solve

System Identification

State Estimation

Controller Design
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SIEMENS
System Identification, State Estimation & Optimal Control with RNNs

S =tanh(As, +Bu) oo ine pNNinto the S = tanh(As, +B 1, (s,)
y, =Cs, future, given A,B,C. y. =Cs.
>
system identification Learn a linear feedback normative target
.\ : controller: u_ = u(s_) = Ds, :
;(y,—yr) — min ;L(yr)emgn
C
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Reward Maximization with a Learned Controller

Tasks:

System Identification
State Estimation
Controller Design

Challenges:
= High data volume (5000 var/sec)

Reward

Learned controller

= Streaming real-time analysis

(different alogrithms) b

- = Autonomous learning

No operation

= Real-time data analytics using
] 1000 learned models

Random actions

= Optimization of emissions

Number of 5 s time steps » Optimal turbine operation
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