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Neural Networks @ Siemens:  25 Years of Research, Development, Innovation
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Mathematical Neural Networks

# variables

non-
linearity

Linear Algebra

Calculus Neural 
Networks

)( 12 xWfWy =

Existence Theorem:
(Hornik, Stinchcombe, White 1989)
3-layer neural networks can 
approximate any continuous 
function on a compact domain.

Complex Systems Nonlinear Regression
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Based on data identify an input-output relation

Neural networks imply a Correspondence of
Equations, Architectures, Local Algorithms.
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Neural Networks are No Black Boxes

Sensitivity Analysis: Compute the first 
derivatives along the time series:

 

In
pu

ts

NOx Sensitivity over Time

Model Output vs. actual NOx

A classification of input-output sensitivities:

 constant over time (= linear relationship)

 monotone (input can be used in 1dim. control)

 non-monotone (only multi-dim control possible)

 ~ zero (input useless in modeling and control)

0>
∂
∂

iinput
output 0<

∂
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output

Application: Modeling of a Gas Turbine
 Inputs: 35 sensor measures and control 

variables of the turbine
 Output: NOx emission of the gas turbine
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Neural Forecasting of Wind Power Supply

 Task: Forecast the wind energy supply of an entire wind field over the next 24 hours
 Solution: Deep Neural Network (DNN) with 10 hidden layers. Inputs are wind speed and direction
 Results: DNN (RMSD: 7.20%) outperform the analytical Jensen model (benchmark, RMSD: 10.22%)

Forecast vs. actual Energy Supply (0h) Forecast vs. actual Energy Supply (6h)

Forecast vs. actual Energy Supply (12h) Forecast vs. actual Energy Supply (18h)

Training Test

Training Test Training Test

Training Test
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Forecasting of Solar Power Supply

 Forecast the energy supply of a PV plant with a neural network 
(SENN) based on weather forecasts and/or a physics based model 

 Data set: 2011-09-08 to 2012-01-23. Minute data (200k data points). 
40k data points are randomly selected as test data. 

 Performance of a purely data-driven model (SENN) is comparable 
to the physics based model

 A hybrid model (SENN & physics) improves the forecast accuracy
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Forecast Horizon: 24h in minute time buckets (Test day, 2012-01-01)
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Optimizing Sensors with Neural Networks

Improve Optical Smoke Detectors:

• Smoke-poor fires are hard to detect

• Avoid false alarms caused by e.g. steam, 
welding, exhaust fumes

sensor signal

NN-Output

target ( =1 if fire, =0 else )

water steam plastic fire

Modeling with Neural Networks:

• Input: 3 inputs extracted from one sensor 
over 40 time steps. 50 fire scenarios.

• Network Design: Feedforward network 
including local and global modeling.

• Network Learning: Stochastic learning 
including cleaning noise

• Result: Neural networks was able to 
classify all patterns correctly (time series of 2 different scenarios)
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Finite unfolding in time transforms 
time into a spatial architecture. We 
assume, that xt=const in the future.
The analysis of open systems by 
RNNs allows a decomposition of 
its autonomous & external driven 
subsystems.
Long-term predictability depends 
on a strong autonomous subsystem.
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Modeling of Open Dynamical Systems with Recurrent Neural Networks (RNN)
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An error correction system considers the 
forecast error in present time as a reaction on 
unknown external information. 

In order to correct the forecasting this error is 
used as an additional input, which substitutes 
the unknown external information. 
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Modeling Dynamical Systems with Error Correction Neural Networks (ECNN)
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Combining Variance - Invariance Separation with ECNN

 The bottleneck autoassociator solves the 
variance - invariance decomposition.

 The Error Correction Neural Network
solves the transformed temporal problem.

 The sub-networks are implicitly coupled 
by shared weights.
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Load Forecast actual Load

date

Effective Load Forecasting with Recurrent Neural Networks

 Task: Predict the upcoming energy 
demand on a 15 min. time grid up to 5 
days ahead.

 Difficulty: Incorporate the impact of ex-
ternal influences on the energy demand.

Load Forecasting for Electrical Energy

Load Forecast vs. Actual Load
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Accuracy of load forecast is 97,95% (Benchmark 95%) 
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Modeling Closed Dynamical Systems with Recurrent Neural Networks

… but to understand the dynamics of the observables, we have to reconstruct at least a part 
of the hidden states of the world. Forecasting is based on observables and hidden states.
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The Identification of Dynamical Systems in Closed Form

Embed the original architecture into a larger architecture, which is easier to learn. After the
training, the extended architecture has to converge to the original model.
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The essential task is NOT to reproduce the past observations, but to identify related 
hidden variables, which make the dynamics of the observables reasonable.



Page 14 © Siemens AG, Corporate TechnologyIntelligent Systems & Control

Approaches to Model Uncertainty in Forecasting
1 Measure uncertainty as volatility (variance) of the 

target series. The underlying forecast model is a 
constant. Thus sin(ωt) can be highly uncertain!??

2 Build a forecast model. The error is interpreted 
as uncertainty in form of additive noise. The width 
of the uncertainty channel is constant over time.

3 Describe uncertainty as a diffusion process 
(random walk). The diffusion channel widens over 
time, e.g. scaled by the one-step model error. 
For large systems 2 & 3 fail: We have to learn to 
zero error → the uncertainty channel disappears.

4 One large model doesn't allow to analyze forecast
uncertainty, but an ensemble forecast shows the 
characteristics of an uncertainty channel: Given a 
finite set of data, there exist many perfect models 
of the past data, showing different future scenarios 
caused by different estimations of the hidden states.

Training Test

Target Series
Forecast

Time Steps of Forecast Horizon (20 Days)Forecast Horizon (in days)
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Control of Dynamical Systems with Recurrent Neural Networks

Questions to Solve

System Identification

State Estimation

Controller Design
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System Identification, State Estimation & Optimal Control with RNNs

Unfold the RNN into the 
future, given A,B,C.

Learn a linear feedback 
controller:
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Reward Maximization with a Learned Controller
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Challenges:
 High data volume (5000 var/sec)

 Streaming real-time analysis

 Autonomous learning

 Real-time data analytics using 
1000 learned models 

 Optimization of emissions

 Optimal turbine operation

Tasks:
System Identification

State Estimation
Controller Design


