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Why do we want to do Big Data? 

Big Data
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Because we can! 

Big Data
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Why do we have to do Big Data?

Big Data
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Customers

Because something explodes

Big Data

#entitities, sensors, 
data generators Detailed user / 

customer profiles
Genomics
Proteomics
…

#attributes

Social networks
Patient networks

#relationships

Consumers, users, 
customers, 

Text documents
WWW
Log-Files generators
OMICS
Mobile devices
Images
Cars
Smart meters

#data sources Data complexity

time

location

Multipliers
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Let’s consider complexity
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Patient in a Complex Environment with all Sorts of 
Networks

A patient in multiple social and other networks 
with relationships to

» Physicians
» Patient with similar complaints
» Orders, medications
» Diagnosis
» Treatments

Increasing relevance of  –omics data
» genomics, proteomics, metabolomics, …

Patient Modell

A patient in a clinic as a socal being with 
multiple complex relationships and attributes 
and part of severeral networks

The new view
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Network of Sensors
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How to describe the complexity of the world?

Let’s address complexity
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A triples as a representation of a binary relation 
RDF triple (resource description framework)

The world is just a bunch of triples

Basic Information Element

Subject Predicate Object

Nicolas hasFriend Angela
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The World is Just a Directed Labeled Graph

1e

2e

3e

4e

5e

6e

RDF Graph
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Linked Open Data (LOD) und YAGO
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Social Network

The World is Just a Bunch of Networks
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6e“knows”

“hasVisited” “likes”
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The Associated Adjacency Matrices
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The World is Just a Big Adjacency Matrix

“hasVisited”“likes”“knows”
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Why Machine Learning?

“hasVisited”“likes”“knows”

A lot of Machine Learning tasks can be reduced to the task of predicting the 
existence of triples
Classification
Attribute Prediction
Relationship Prediction
Clustering
…

?
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A Dual Graph of Random Variables

1e

2e

3e

4e

5e

6e

Goal of machine learning: predict triples not known to be true (dashed 
links)
We introduce a random variable for each possible link; the random 
variables then form a dual graph to the RDF graph
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Predicting a Triple from Its Immediate Neighborhood
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Machine Learning in Terms of Adjacency Matrices
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triple of interest

If                                        is known to be true 

then the variable                      otherwise

For each predicate p=j we form an adjacency matrix 

with

We form the Matrix M by concatenating the adjacency matrices and their 
transposed
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A Model

N: number of entities          P: number of predicates

Here,                          is the weight for predicting                     from

Note that the weight is independent of subject i: implied exchangeability

weights for object triples (independent of object j)

weights for subject-object triples (independent of
both subject i and object j) 
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Weight Optimization (Overview)

We use a least squares cost function 
We include  weight regularizers to avoid overfitting (ridge regression)

We first perform an SVD smoothing on the input representation (improves 
generalization and reduces the number of free parameters)
Parameter optimization is performed efficiently using alternating least 
squares   

[Jiang et al., ISWC 2012]
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Another Representation: The World as a Tensor

“hasVisited”“likes”“knows”
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Modeling an RDF Triple Store as a Three-Way Tensor
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RESCAL Factorization
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Tasks
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Scalability
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[Nickel , Tresp, Kriegel, WWW 2012]
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US-Presidents Example
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Writer‘s Nationality
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Cora Citation Network
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Scalability
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Querying with Statistical Machine Learning:
Find all persons, that live in Munich and who want to be Trelena‘s friends

learn

Known friends

Recom. Friends



Page 33

Bottari: Deductive and Inductive Stream Reasoning for Semantic 
Social Media Analytics

An augmented reality application for personalized recommendation of 
restaurants in Seoul

Winner of the ISWC 
2011 Semantic Web 

Challenge

Balduini et al., JWS, 2012
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Predicting Relationships between Genes and  Diseases 

[Huang et al., 2012] [Jiang et al., 2012]
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Genes and Diseases
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Patient in a Complex Environment with all Sorts of 
Networks

A patient in multiple social and other networks 
with relationships to

» physicians
» Patient with similar complaints
» Orders, medications
» Diagnosis
» Treatments

Increasing relevance of  –omics data
» genomics, proteomics, metabolomics, …

Patient Modell

A patient in a clinic as a socal being with 
multiple complex relationships and attributes 
and part of severeral networks

The new view
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Network of Sensors
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Conclusions

We have addressed the complexity aspect of Big Data
Interesting data structures: graphs, matrices, tensors
Machine learning as triple prediction (>10^14 in one step)

Efficient solutions exploiting sparse matrix algebra!

We are extending our approach in several directions 
Inclusion of textual documents and logical background
Sequential and temporal information
Real numbers


