Overlay plots for comparison ATLAS-CMS-LHCb

Katharina Müller LHCb

Roadmap for comparison between the experiment

Theoretical uncertainties of the extrapolation

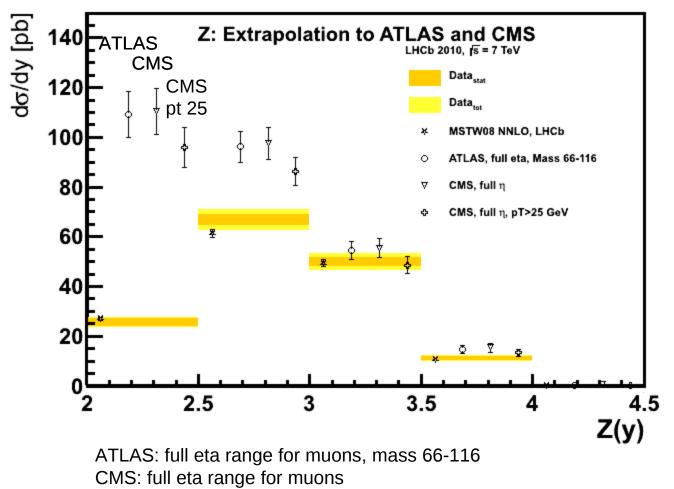
- Baseline MC: MC@ NLO or Powheg with eg CT10 NLO PDF
- \rightarrow for pT: Alpgen or Sherpa
- Uncertainty due to knowledge on PDFs
 - experimental input: PDF uncertainties as given by PDF set
 - fitting: different NLO PDF sets (HERA1.5, MSTW08NLO, NNPDF2.1)
 - not addressed yet: uncertainty due to α_{s}
- Estimate effects due to modelling of parton showers and UE
 - same PDF but different parton showers Powheg+Pythia versus Powheg+Herwig
- Need to define common strategy for a consistent evaluation of the higher order electroweak corrections with their uncertainties
- → Lots of MC studies needed to get the extrapolation factors, not all MCs available for LHCb
- \rightarrow Conflict with our 2011/2012 analyses
- \rightarrow New approach, calculating the CF with FEWZ

For comparisons on born level: measurements are corrected to parton level → we can use NLO calculation for extrapolation to ATLAS/CMS fiducial region

- Calculate extrapolation factor at NLO with FEWZ (MSTW08)
- MSTW08 PDF uncertainty
- PDF fit: NNPDF, CTEQ (HERA1.5)
- theoretical uncertainties from scale variation or NNLO (not yet)

Tried extrapolation to ATLAS and CMS phase space for Z(y), W(eta), Asymmetry

Z: extrapolation to ATLAS, M(66-116) no cut on eta(muon)

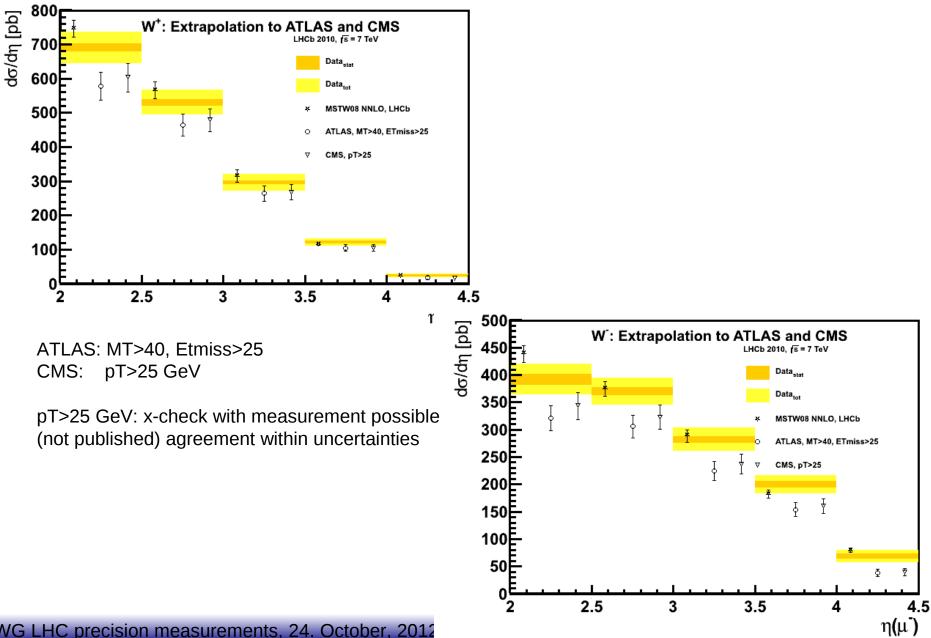

Bin	xsec	correction num		pdf up	pdf down	NNPDF	CT10
	13.2497 30.0409	4.1528 1.4894	0.0078 0.0018	0.0067 0.0015	0.0081 0.0016	0.012 -0.0041	0.012 -0.0029
	24.6387 5.6611 0.124	1.0944 1.33 2.0221	0.0017 0.0041 0.0237	0.0004 0.0026 0.014	0.0004 0.003 0.0457	-0.0002 -0.0081 -0.0241	-0.0015 -0.0085 -0.116
Bin	corr-xsec	orr-xsec correction error		error down			
2.5-3 3-3.5	55.0228 44.7441 26.9656 7.5292	4.1528 1.4894 1.0944 1.33	0.0158 0.0048 0.0023 0.0099	0.0165 0.0049 0.0024 0.01			

Error on correction factor: numerical, PDF, max difference(CT10, NNPDF) summed in quadrature

WG LHC precision measurements, 24. October, 2012

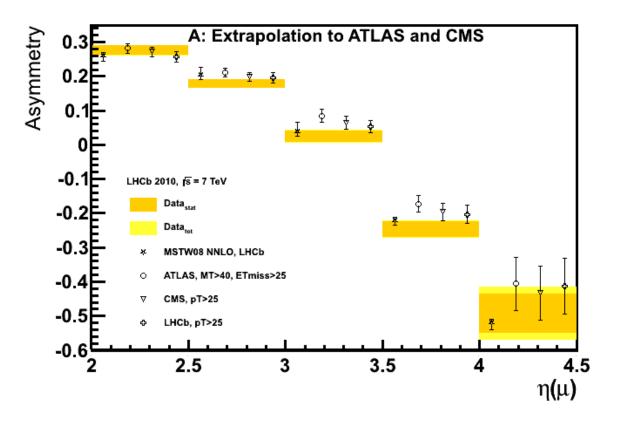
Katharina Müller

Plots: Z x-section

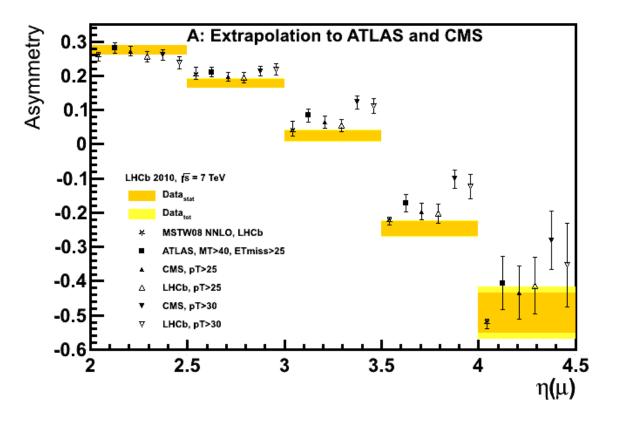

CMS pt25: full eta range for muons, pt>25 GeV

Note: uncertainty of extrapolated value dominated by measurement

WG LHC precision measurements, 24. October, 2012


Katharina Müller

Plots: W x-section


WG LHC precision measurements, 24. October, 2012

Plots: W charge asymmetry

x-check with published LHCb data possible

Plots: W charge asymmetry

extrapolation to pt>30 x-check with published LHCb data possible – ok but uncertainties are correlated

WG LHC precision measurements, 24. October, 2012

Katharina Müller

Summary

Method as proposed by LHC electroweak group:

- lack of manpower & time
- lack of MC
- presently not feasible for LHCb

FEWZ method

- fast, all the CF available
- x-check with MC method from ATLAS/CMS
- x-check with data: ok
- missing: theory uncertainties
- consider electroweak corrections?
- uncertainties due to parton showering: is this needed?
- presently: uncertainties dominated my measurement not by extrapolation