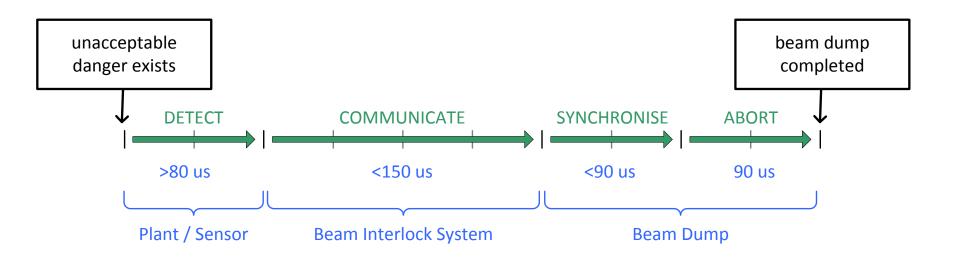


Work progress and issues – WP7 Machine Protection

T.Baer, R.Schmidt, J.Wenninger, D.Wollmann, M.Zerlauth CERN


The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

- Much of detailed work will be dealt with in respective WPs
- Coordination and general overview of Machine Protection related question through expertise in LHC Machine Protection Panel (MPP)
- Experience shows very well protected machine (lot of redundancy) in absence of (very) fast kicker failures
- Identified list of main topics that are (or will have to be) addressed in view of HL-LHC

- MP implications of crab cavities
 - Current design would require 1.7σ aperture margin
 - MPS response by dumping the beams not sufficient for very fast failure cases < 1 turn

Failure detection time @ LHC

CERN Control Centre							
Safe Machine Parameters (others)							
Access System							
Warm Magnet Interlock Controllers							
Experiment Magnets							
Beam Television							
Safe Machine Parameters (Beam Presence Flag)							
Collimation System							
Experiment Moveable Devices							
Vacuum System							
Powering Interlock Controllers							
Transverse Feedback							
Fast Magnet Current Change Monitors							
Beam Lifetime Monitor							
Experiment Detectors							
Beam Loss Monitor System							
	10µs	100µs	1ms	10ms	100ms	1s	10s

best failure detection time = 40 us = half turn

- Possible mitigations/improvements
 - Passive increase of τ for critical failures through LLRF and cavity design (available power, Qext,...)
 - Dependable & fast detection of failures
 - Introduce direct links IR1/5->IR6 for beam aborts?
 - Additional abort gaps?
- Dependable measurement & interlocks on tail population + head-tail oscillations to limit deposited energy
 - New instrumentation and interlock techniques (head tail monitor)
 - Hollow electron lens for cleaning
 - Other cleaning techniques?

- DIAMOND beam loss monitors for diagnostics + active protection
- Accept asynchronous dumps + local damage (e.g. new collimator materials and/or spare surfaces)?
- Re-iterate (realistic) damage thresholds for different failure cases
- Protection against magnet powering failures (cold D1 at $\beta^* \sim 15$ km, new insertion layout)
- Injection protection (TCDI, TDI, injection lines,...)
- Dump protection (TCDQ,..)
- Absence of LRBB kick during beam dump

